Лаборатория химических историй. От электрона до молекулярных машин - Михаил Левицкий Страница 10

Книгу Лаборатория химических историй. От электрона до молекулярных машин - Михаил Левицкий читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Лаборатория химических историй. От электрона до молекулярных машин - Михаил Левицкий читать онлайн бесплатно

Лаборатория химических историй. От электрона до молекулярных машин - Михаил Левицкий - читать книгу онлайн бесплатно, автор Михаил Левицкий

Лаборатория химических историй. От электрона до молекулярных машин

При поисках высокополярного растворителя, который мог бы разрушить эти водородные связи, было испытано несколько тысяч различных органических соединений. Почему же потребовалось исследовать такое большое количество растворителей? Дело в том, что поиск подходящего растворителя ведется в определенной области «подозреваемых» соединений. Опытные химики могут весьма точно очертить такую область. Имеются даже некоторые теоретические предпосылки, которые помогают выбрать класс подходящих веществ. Но невозможно указать заранее формулу конкретного соединения. И поиск правильного решения с помощью рассуждений не гарантирует успешный результат: необходим накопленный опыт, экспериментальное чутье и часто просто бесконечное экспериментирование.

В конечном итоге проблему удалось решить. История науки показывает, что широкий и интенсивный поиск решения задачи часто приводит к успеху – особенно если известно, что она в принципе разрешима. Было найдено сразу несколько растворителей, и оптимальным оказался диметилформамид (CH3)2NC(O)H.

Лишь по одной детали можно судить, насколько трудной была задача по поиску растворителя. На растворяющую способность веществ заметно влияют даже незначительные различия в структуре. Например, очень близкие по строению к диметилформамиду (CH3)2NC(O)H соединения – формамид H2NC(O)H и диэтилформамид (C2H5)2NC(O)H – не растворяют полиакрилонитрил. Можно представить, как легко было «проскочить» мимо нужного соединения, проверив лишь растворяющую способность двух из трех очень похожих соединений. Диметилформамид положил начало использованию полиакрилонитрильного волокна, которое стали получать, продавливая раствор через фильеры в воду (диметилформамид смешивается с водой). Волокно по внешнему виду напоминает шерсть, окрашивается в различные цвета, обладает заметной прочностью, светостойкостью и термостойкостью (длительно выдерживает 120–130 ℃, практически не изменяя своих свойств). Недостаток этого волокна – низкая гигроскопичность (влагопоглощаемость). Его торговое название в отечественной промышленности – «нитрон», а в зарубежной – «орлон» (рис. 1.29).

Лаборатория химических историй. От электрона до молекулярных машин

Орлон, в свою очередь, помог начать широко использовать диметилформамид. Ранее это было довольно редкое соединение, имевшееся далеко не в каждой лаборатории, но после того, как была обнаружена уникальная растворяющая способность, его стали производить в промышленном масштабе. Диметилформамид оказался почти универсальным растворителем и в настоящее время широко применяется в производстве пленок, лаков, красок, искусственной кожи, а также служит реакционной средой, обладающей каталитическими свойствами. В научной литературе для него даже есть специальное сокращение – ДМФА (в англоязычной литературе – DMF).

Необычное превращение происходит с полиакрилонитрилом при 300 оС: нитрильные группы взаимодействуют, замыкая циклы, затем происходит дегидрирование (отщепление водорода), и образуется имеющий лестничное строение полимер, состоящий из конденсированных циклов (рис. 1.30).

Лаборатория химических историй. От электрона до молекулярных машин

В результате нагрева соединение приобретает черный цвет (его называют «черным орлоном»), оно выдерживает нагревание в открытом пламени до температуры красного каления без видимого разрушения. Так как это соединение ни в чем не растворяется, то для получения определенного изделия его формируют из полиакрилонитрила, а затем оно подвергается термообработке. При дальнейшем нагревании черного орлона при 1500–2000 оC в среде инертного газа образуется углеволокно.

Углеродные волокна (иногда их называют графитовыми волокнами) обладают редким сочетанием свойств. Они имеют большую прочность на растяжение и потому используются для армирования полимерных композиций для авиации и автомобилестроения. Высокая термостойкость волокон придает этим композициям огнестойкость, кроме того, компактный слой углеродных волокон эффективно отражает тепло, что затрудняет терморазложение связующего полимера.

Благодаря высокой химической стойкости этих волокон, изготовленные из них ткани применяют для фильтрации агрессивных жидкостей, очистки газов и при изготовлении защитных костюмов для работы с едкими веществами.

Углеродные волокна электропроводны, что позволяет их использовать в качестве добавки при изготовлении электропроводящего асфальтобетона для нагреваемого дорожного покрытия аэропортов. Это помогает в зимний период легко устранять обледенение взлетных полос.

При введении таких волокон в структуру ткани образуется нагревающийся материал, используемый в быту, например при изготовлении термоодежды и термоодеял. В отличие от металлических нитей и спиралей углеродные волокна устойчивы к многократным изгибам, что обеспечивает долговечность и безопасное использование таких изделий.

Из полимерных композиций с углеволокном изготавливают легкий и прочный спортивный инвентарь: хоккейные клюшки, лыжи, лыжные палки, вёсла, велосипедные рамы.

Клей мгновенного действия – цианоакрилат

Если в молекуле этилена нитрильную группу -C≡N (как в предыдущем примере) и сложноэфирную группу -С(=О)ОMe (как в полиметилметакрилате, рассмотренном выше) присоединить к одному и тому же атому углерода, то образуется цианоакрилат (рис. 1.31) СH2=С(СN)(СООR). Его склонность к полимеризации исключительно высока из-за того, что электронная плотность сильно оттянута от двойной связи добавленными группами. Он применяется в виде мономера, а полимер получается сам в процессе использования. Это широко известный суперклей «циакрин». Он был создан американским химиком Гарри Кувером и мгновенно стал сверхпопулярным веществом. В 2010 г. американский президент Барак Обама наградил Кувера за эту разработку Национальной медалью технологий и инноваций. Циакрин склеивает большинство известных материалов и отвердевает почти мгновенно под действием влаги, присутствующей в незначительных количествах на большинстве поверхностей. Еще эффективнее, чем влага, действуют амидные группы, присутствующие в белках, поэтому его с успехом стали применять для обработки ран, ожогов, а также для склеивания треснувших ногтей. Свойства циакрина можно варьировать, изменяя группу R в сложноэфирной группе -OC(=O)R. Наиболее распространен циакрин, у которого R = CH3, однако у него низкая водостойкость. Она повышается, когда R = C2H5 и C3H7, но такие соединения заметно дороже. Когда R = C8H17 (октил-цианоакрилат), клей наименее токсичен, его применяют для остановки сильных кровотечений и для склеивания кровеносных сосудов при хирургических операциях.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.