Большое космическое путешествие - Дж. Ричард Готт Страница 10
Большое космическое путешествие - Дж. Ричард Готт читать онлайн бесплатно
Наконец, Кеплер сформулировал одно уравнение. Первое космическое уравнение.
Он стал измерять все расстояния в отрезках, равных расстоянию от Земли до Солнца.
Мы называем такой отрезок «астрономическая единица» (а. е.). Расстояние от планеты до Солнца меняется в зависимости от положения ее на орбите. Эллипс похож на вытянутый круг, у него есть длинная и короткая оси, которые называются соответственно большой и малой. Кеплер (блестяще) заключил, что мерой расстояния от планеты до Солнца следует взять половину большой оси ее орбиты. Мы называем его «большая полуось». Это арифметическое среднее максимального и минимального расстояния планеты от Солнца.
А при измерении времени в земных годах получается уравнение, в котором забрезжили первые признаки грядущего постижения космоса. Если обозначить буквой P период, равный одному планетному году (выраженный в земных годах), и обозначить буквой a среднюю величину максимального и минимального расстояния планеты от Солнца (в астрономических единицах), то получится:
P2 = a3,
третий закон Кеплера. Рассмотрим случай с Землей. Период вращения Земли равен 1. Среднее расстояние между афелием и перигелием равно 1. 12 = 13. Работает. Хорошо.
Если этот закон действует в пределах всей Солнечной системы, то он должен соблюдаться для любой планеты (или другого объекта, вращающегося по околосолнечной орбите), независимо от того, был ли этот объект известен при Кеплере или открыт позднее. Как насчет Плутона? Кеплер о Плутоне не знал. Проверим Плутон. Среднее расстояние между ним и Солнцем равно 39,264 а.е. Итак, по закону Кеплера, P2 = 39,2643. Получается 60 381,8. Можете проверить на калькуляторе. Период орбитального вращения P должен быть равен квадратному корню из 60 381,8, что составляет 246. Сколько времени длится год на Плутоне? 246 земных лет.
Кеплер был нереально крут.
Когда Исаак Ньютон формулировал закон всемирного тяготения, он опирался на P2 = a3, чтобы описать, как гравитационное притяжение ослабевает с увеличением расстояния. Оно убывало обратно пропорционально квадрату расстояния. Чтобы получить такой ответ, Ньютон воспользовался дифференциальным исчислением, которое, кстати, незадолго до того сам и изобрел. Ньютон обобщил закон Кеплера и сформулировал другой закон, применявшийся уже не к Солнцу и планетам, а к любым двум телам во Вселенной. В основе этого закона лежала сила взаимного гравитационного притяжения двух этих тел, описываемая по формуле
F = Gmamb/r2,
где G – константа, ma и mb – массы двух тел, r – расстояние между центрами этих тел.
Из этого уравнения можно вывести третий закон Кеплера P2 = a3 как частный случай. Также можно вывести первый и второй законы Кеплера; доказать, что орбита планеты – это эллипс, в одном из фокусов которого находится Солнце, а также что планета заметает равные площади орбиты за равное время. Вот какова сила ньютоновского закона тяготения, и он этим даже не исчерпывается. Он полностью описывает гравитационное притяжение между двумя телами во Вселенной, независимо от того, по каким орбитам они обращаются. Ньютон расширил наши представления о космосе и дал такое описание планет, о котором Кеплер и помыслить не мог. Ньютон вывел эту формулу в неполные 26 лет. Он открыл законы оптики, выделил цвета спектра и выяснил, что, если объединить цвета радуги, вместе они дают белый. Он изобрел телескоп-рефлектор. Изобрел дифференциальное исчисление. Все это сделал Ньютон.
Следующая глава – о нем.
Глава 3 Законы НьютонаАвтор: Майкл Стросс
Коперник совершил революционное открытие, объяснив движения планет в контексте гелиоцентрической Вселенной и поместив Солнце в центре Солнечной системы. Различные планеты, и Земля в том числе, движутся по околосолнечным орбитам. Мы сидим на движущейся платформе. Чтобы определить, как быстро движется Земля, мы должны определить, какое расстояние она проходит за конкретный интервал времени. В таком случае скорость будет равна расстоянию, деленному на время.
Как было рассказано в главе 2, Кеплер показал, что орбита Земли имеет форму эллипса. На самом деле орбиты большинства планет в нашей Солнечной системе близки к круговым, так что пока приблизительно условимся, что Земля движется по кругу и один такой круг проходит за год. Радиус этого круга, то есть расстояние от Солнца до Земли, постоянно используется в астрономии. Как было сказано в предыдущей главе, оно официально называется «астрономическая единица», сокращенно а.е. Одна а.е. равна примерно 150 миллионам километров, или 1,5 × 108 км.
Итак, за год Земля описывает окружность с радиусом 150 миллионов километров. Длина окружности равна 2π радиуса. Все знают, что число π примерно равно 3. Примерно такими грубыми приближениями оперируют астрономы. Длину окружности нужно разделить на время, то есть на 1 год.
Пересчитаем год в секундах, впоследствии нам это пригодится. Количество секунд в году равно: 60 секунд в минуте умножить на 60 минут в часе, умножить на 24 часа в сутках, умножить на 365 дней в году. Можно посчитать на калькуляторе, но, как вы помните из главы 1, Нил отметил свою миллиардную секунду бутылкой шампанского, а было ему тогда около 31 года. Соответственно в году примерно 1/30 миллиарда, то есть около 30 миллионов секунд. Возьмем приблизительно 3,0 × 107 секунд в году.
Резюмируя, можно сказать, что Земля вращается вокруг Солнца со скоростью 2πr/(1 год) = 2 × 3 × (1,5 × 108 км)/(3 × 107 с) = 30 км/с. Вот с такой скоростью мы движемся вокруг Солнца прямо сейчас. Просто несемся! Но нам кажется, что мы спокойно сидим на месте, – возможно, именно поэтому древним казалось естественным ставить себя в центр Вселенной. Это представлялось столь очевидным. Но на самом деле можно заметить активное движение. За сутки Земля совершает полный оборот вокруг своей оси. За год она обходит полный путь вокруг Солнца со скоростью 30 км/с. Во второй части книги мы расскажем, что Солнце также движется (увлекая за собой Землю и другие планеты).
Коперник говорил, что планеты вращаются вокруг Солнца. Кеплер воспользовался расчетами Тихо Браге, определив с их помощью орбиты разных планет и изучив их свойства. Как упоминалось в главе 2, он вывел из этого три закона. Исаак Ньютон, один из героев нашей истории, смог вывести из третьего закона Кеплера такое следствие: притяжение – это радиальная сила между двумя объектами, обратно пропорциональная квадрату расстояния между ними.
Пожалуй, Ньютон был величайшим физиком, возможно, самым великим из когда-либо живших ученых. Он совершил множество фундаментальных открытий. Ньютон хотел понять, как движется все на свете: не только планеты вокруг Солнца, но и мяч, подброшенный в воздух, или камень, катящийся по склону.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments