Апология математики - Владимир Успенский Страница 11

Книгу Апология математики - Владимир Успенский читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Апология математики - Владимир Успенский читать онлайн бесплатно

Апология математики - Владимир Успенский - читать книгу онлайн бесплатно, автор Владимир Успенский

Апология математики

Перечисленные 4 пластинки, в том порядке, как они указаны, обозначим — для дальнейших ссылок — буквами A, B, C, D. Если приложить одну пластинку к другой, но не торцами, как при игре в домино, а боками, то в результате получим две строчки букв: одну сверху, другую снизу. Так, прикладывая A к D (слева D, справа A), получаем zzzx сверху и zzx снизу. Если приложить в другом порядке, получим xzzz сверху, zxz снизу. Аналогично можно прикладывать друг к другу несколько пластинок и считывать верхнюю и нижнюю строчки букв. Более того. Каждую пластинку разрешается воспроизводить в неограниченном количестве и создавать сочетания из повторяющихся пластинок — такие, например, как AACA. В этом примере верхней строчкой будет xxxzx, а нижней — zxzxzzzx. Прошу у читателя прощение за затянувшееся предварение к игре, но хотелось бы, чтобы всё было предельно ясно.

Теперь — сама игра. Она состоит в следующем. В средствах массовой информации объявляется некоторый конкретный набор пластинок. Далее предлагается, воспроизводя каждую из пластинок набора в необходимом количестве, приложить пластинки друг к другу так, чтобы верхняя и нижняя строчки иксов и зетов совпали друг с другом. Первым пяти, приславшим решения, будет выплачен внушительный приз.

Поясним сказанное на примерах. Пусть объявленный набор содержит всего только одну пластинку A из приведённого выше перечня. Ясно, что решение невозможно, поскольку, сколько раз ни прикладывай пластинку A саму к себе, нижняя строка всегда окажется длиннее верхней. По сходной причине решения не существует, если объявленный набор состоит из одной только пластинки D, только тут длиннее будет верхняя строка. Желающие могут попытаться доказать, что решения не существует и в том случае, когда объявленный набор состоит из двух пластинок, A и D. А вот если объявить набор из всех наших четырёх пластинок A, D, C и D, то решение существует. Действительно, если сложить пластинки в таком порядке: DBCDA, то и верхняя, и нижняя строка окажутся одинаковы: zzzxxzzzzx.

Итак, набор объявлен. Все хотят получить приз. Но прежде, чем пытаться найти такое расположение пластинок, при котором верхняя и нижняя строки окажутся одинаковыми, желательно узнать, возможно ли такое расположение в принципе. Ведь если оно невозможно, то бесперспективно его искать, это будет пустой потерей времени. Так вот, оказывается, что не существует никакого эффективного способа это узнавать. Не существует (именно не существует, а не просто неизвестен) такого алгоритма, который позволял бы для любого объявленного набора пластинок узнать, имеется ли решение, то есть возможно или невозможно сложить пластинки требуемым образом. Для каждого отдельно взятого набора пластинок задача узнать, к какой из двух категорий этот набор относится — к той, для которой решения имеются, или же к той, для которой решений нет, — она, эта задача, есть сугубо творческая задача, своя для каждого такого набора, а общий метод получения ответа для всех таких задач отсутствует.

Апология математики Апология математики Глава 7. Парадокс Галилея, эффект Кортасара и понятие количества

В детстве меня иногда посещал следующий кошмар. Мне представлялось большое число стульев (наглядно — в виде стульев в партере летнего театра). И вот их начинают пересчитывать. Получают некоторое число. Затем пересчитывают в другом порядке и получают другое число. Кошмар заключался в том, что при обоих подсчётах не было ошибки.

Только в университете я узнал, что невозможность описанного только что явления составляет предмет особой, и притом не слишком просто доказываемой, теоремы математики. А потом я прочёл «Записи в блокноте» Хулио Кортасара. Там говорилось о произведённой в 1946 или 1947 году операции по учёту пассажиров на одной из линий метро Буэнос-Айреса: «‹…› Было установлено точное количество пассажиров, в течение недели ежедневно пользующихся метро. ‹…› Учёт производился с максимальной строгостью у каждого входа и выхода. ‹…› В среду результаты исследований были неожиданными: из вошедших в метро 113 987 человек на поверхность вышли 113 983. Здравый смысл подсказывал, что в расчётах произошла ошибка, поэтому ответственные за проведение операции объехали все места учёта, выискивая возможные упущения. ‹…› Нет необходимости добавлять, что никто не обнаружил мнимой ошибки, из-за которой предполагались (и одновременно исключались) четверо исчезнувших пассажиров. В четверг все было в порядке: сто семь тысяч триста двадцать восемь жителей Буэнос-Айреса, как обычно, появились, готовые к временному погружению в подземелье. В пятницу (теперь, после принятых мер, считалось, что учёт ведется безошибочно) число людей, вышедших из метро, превышало на единицу число вошедших».

При дальнейшем чтении я, к сожалению, обнаружил, что Кортасар предлагает некое рациональное объяснение изложенному им парадоксу; вот тут очевидное отличие Кортасара от его старшего соотечественника Борхеса (влияние коего Кортасар, несомненно, испытал): Борхес не стал бы искать рационального оправдания. «К сожалению» сказано потому, что поначалу мне показалось, что здесь выражена глубокая идея о возможности, хотя бы в фантазии, следующего эффекта: при очень большом количестве предметов это количество не меняется при добавлении или убавлении сравнительно небольшого их числа. И хотя, повторяю, приписывание Кортасару открытия и опубликования этого воображаемого эффекта оказалось ошибочным, я всё же буду называть его для краткости эффектом Кортасара; тем более что такое название полностью соответствует так называемому принципу Арнольда, установленному нашим выдающимся математиком Владимиром Игоревичем Арнольдом: если какое-либо явление или утверждение носит чьё-либо имя, то это означает, что оно не имеет своим автором носителя этого имени. Предположение, что эффект Кортасара имеет отношение не только к воображению, но и к реальности, может показаться бредом, но, как будет видно ниже, сформулированное в нём явление действительно имеет место, если очень большое становится бесконечным.

Бесконечное вообще следует — в понятийном аспекте — трактовать как упрощённое представление о конечном, но очень большом. А бывает ли вообще бесконечное количество предметов? Бывает ли оно в физической реальности — этого никто не знает. Количество звёзд во Вселенной — конечно оно или бесконечно? Мнения расходятся, и проверить, кто прав, довольно затруднительно. В реальности же идеальной — да, бывает. Например, бесконечен натуральный ряд, то есть ряд натуральных чисел 1, 2, 3, 4,… Предупредим для ясности, что в этой главе, вплоть до особого распоряжения, никаких других чисел рассматриваться не будет, а потому натуральные числа будут именоваться просто числами.

Натуральный ряд представляет собой, пожалуй, наиболее простой пример бесконечной совокупности, или, как говорят математики, бесконечного множества. И уже в нём можно наблюдать некоторые парадоксальные явления, в частности — нарушение древней философемы «Целое больше части». На это обратил внимание Галилей, описавший ситуацию с полной отчётливостью и наглядностью. В 1638 году вышла его книга «Беседы и математические доказательства…». Изложение, в духе тогдашнего времени, выглядело как запись бесед, которые в течение шести дней вели между собою вымышленные персонажи. В первый же день была затронута тема бесконечности, в том числе применительно к натуральному ряду. Послушаем, что говорит один из участников беседы, синьор Сальвиати:

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.