Хаос. Создание новой науки - Джеймс Глик Страница 14
Хаос. Создание новой науки - Джеймс Глик читать онлайн бесплатно
Представьте качели на детской площадке. Они набирают скорость, устремляясь вниз, и теряют ее по мере движения вверх; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно [76]. Однако, как ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не останавливаясь и не повторяя тот же рисунок движения, что наблюдался прежде [77].
Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. В нем постоянно противоборствуют две силы – сила трения, стремящаяся затормозить систему, и внешние толчки, приводящие ее в движение. Даже когда подобная система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, взять хотя бы атмосферную систему, которую «заглушает» трение перемещающихся воздушных масс и воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии.
Впрочем, вовсе не непредсказуемость поведения маятников была причиной, которая подвигла физиков и математиков снова всерьез взяться за их изучение в 1960-1970-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является неким процессом созидания. Оно создавало сложность: перед взором исследователей представали причудливые объекты, иногда устойчивые, а иногда не очень, имеющие пределы или безграничные, но всегда обладающие очарованием жизни. Именно поэтому ученые, словно дети, играли в эти игрушки.
Одна такая игрушка появилась на прилавках сувенирных магазинов под названием «космические шары», или «небесная трапеция» [78]. Конструкция представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Г, крепится к маятнику сверху. Третий шар, более массивный, чем первые два, крепится к основанию буквы Т. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, когда нижний шарик приближается к основанию, он получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое и не перестающее удивлять движение напоминает хаос.
Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, раскачивается в любом направлении, не ограничиваясь лишь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы запустить маятник и угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинамиA и В, потом движение перейдет на сторону В и С, и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгнет к A. Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, а следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов – там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке будут видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса в этих областях предсказать практически невозможно.
Ученые, занимающиеся динамикой, традиционно полагают, что описать поведение системы с помощью уравнений – значит понять ее. Что лучше уравнений может передать существенные черты системы? Уравнения, описывающие движение качелей или тех же игрушек, устанавливают связь между углом отклонения маятника, скоростью, преодолеваемым трением и движущей силой. Но из-за того, что в уравнениях присутствует крошечная доля нелинейности, исследователь также обнаружит, что он не в состоянии ответить на простейшие практические вопросы о будущих состояниях системы. С помощью компьютера эти состояния можно смоделировать, быстро просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета быстро нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах.
Но теряется ли на самом деле? Открыв непредсказуемость, Лоренц одновременно обнаружил и некую регулярность. Другим исследователям также удавалось нащупать что-то похожее на структуру в беспорядочном, на первый взгляд, поведении изучаемых систем. Тем, кто не отмахнулся от исследования маятника как объекта, чересчур простого для изысканий, удалось разглядеть весьма интригующие детали. Ученые осознали, что, хотя основное в механизме колебаний маятника уже постигнуто физикой, это знание невозможно применить для прогнозирования долговременного поведения системы. Мелкие детали были уже ясны, а поведение маятника в крупных временных масштабах все еще представлялось загадкой. Рушился традиционный, локальный подход к исследованию систем, подразумевавший рассмотрение каждого элемента в отдельности, а затем соединение их в целое. В отношении маятников, жидкостей, электронных схем и лазеров метод познания, основанный на составлении уравнений, больше не оправдывал себя.
В 1960-х годах дорогой Лоренца шли и некоторые другие исследователи, в числе которых были французский астроном, изучавший орбиты галактик [79], и японский инженер-электронщик, работавший с электронными микросхемами [80]. Тем не менее первая обдуманная и согласованная попытка понять суть отличия глобального поведения от локального исходила от математиков. Среди них был Стивен Смейл из Калифорнийского университета в Беркли, уже известный своими решениями наиболее запутанных проблем многомерной топологии. Когда один из молодых физиков [81] как бы между прочим поинтересовался у Смейла направлением его деятельности, в ответ он услышал всего лишь одно слово, которое буквально ошеломило юношу, показавшись ему чистой воды абсурдом. Смейл изучал осцилляторы! [82] Все колеблющиеся системы – маятники, струны, электросхемы – представляют собой ту область знаний, с которой физики «разделываются» еще в самом начале учебы по причине ее простоты. С чего бы прославленному математику тратить время на элементарную физику? Лишь несколько лет спустя молодой человек осознал, что Смейла интересовали нелинейные хаотические осцилляторы. Этот математик видел вещи, недоступные физикам.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments