Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен Страница 14

Книгу Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен читать онлайн бесплатно

Невидимая Вселенная. Темные секреты космоса - Йостейн Рисер Кристиансен - читать книгу онлайн бесплатно, автор Йостейн Рисер Кристиансен

А еще Андромеда стала первой вращающейся галактикой, к изучению которой приступила Рубин. В 1970-х наблюдения были расширены за счет некоторых других вращающихся галактик. И в то же время темой заинтересовались и другие ученые, измерившие скорости газа за пределом самых крайних звезд галактического диска. Практически все исследования двигались в одном направлении. В сводной статье 1980 года Рубин и соавторы заявляют следующее: «Неизбежный вывод состоит в том, что несветящаяся материя существует и за пределами оптической галактики». Таким образом, невидимая материя существует и за пределами той части галактики, которую мы видим, а видимая «двойная глазунья» позволяет нам рассмотреть лишь небольшую часть всего, что обитает в нашей Галактике.

2.8. Звездный патруль

Почему же именно Вере Рубин удалось так точно измерить кривые вращения галактик? В первую очередь, потому что она с невероятным мастерством и терпением провела ряд наблюдений, не сомневаясь в успехе. Другой важной предпосылкой успеха Рубин было ее сотрудничество с астрономом и разработчиком техники Кентом Фордом (род. в 1931 г.), также ставшим соавтором всех научных статей Рубин о кривых вращения. Форд разработал очень точный спектрограф — прибор того же чипа, что изобрел и использовал в XIX веке для исследования строения Солнца и других звезд Иозеф Фраунгофер. Л при измерении скорости звезд без спектрографа не обойтись.

Да и к тому же измерения скоростей звезд в галактиках лежат в основе открытий не только Рубин, но и Фрица Цвикки, который обнаружил темную материю в скоплениях галактик, изучая скорости их движения.

Но каким же образом Цвикки и Рубин измеряли скорости звезд? Да точно так же, как патрули ДПС измеряют скорость безответственных водителей на дорогах, — используя эффект Доплера.

Скорость и эффект Доплера

Эффект Доплера возникает, когда некий движущийся объект излучает волны. Пожалуй, наиболее очевидный пример из повседневной жизни — это звук проезжающей мимо полицейской машины. Высокий тон «виу-виу-виу» приближающейся сирены и резкий переход к гораздо более низкому, когда она совсем близко, «ВУИ-ВУИ-ВУИ», — и так до тех пор, пока машина не отдалится.

Эффект Доплера касается всех типов волн, в том числе звуковых и световых. Причина эффекта заключается вот в чем: источник волн — в данном случае полицейская машина — движется по направлению к приемнику звука, в данном случае вашему уху. От частоты волн зависит, насколько высоким кажется тон. Частота волн показывает, сколько волн достигают уха каждую секунду: высокая частота дает высокий тон, низкая частота — низкий тон.

Скорость звуковой волны в воздухе на поверхности Земли составляет примерно 340 метров в секунду, и она неизменна вне зависимости от частоты волн. Следовательно, у высокочастотных волн расстояние между каждой новой волной меньше, чем у волн более низкой частотности. Расстояние между двумя следующими друг за другом волнами называют длиной волны. Мы уже упоминали понятие длины волны, когда говорили о световых волнах. И длина волны, и частота — это термины, актуальные для всех видов волн, будь то свет, звук или волны на воде.

Когда сирена двигается в вашем направлении, то каждая новая волна будет все ближе к вам. Таким образом, расстояние между волнами (длина волны) будет меньше, если сравнивать с неподвижной сиреной. Чем короче длина волны, тем выше частота и звонче тон. Соответственно, когда сирена удаляется от вас, она перемещается немного дальше с каждой новой излучаемой волной. Следовательно, расстояние между волнами увеличивается, частота становится ниже, а тон воспринимается как более басистый.

Невидимая Вселенная. Темные секреты космоса

Эффект Доплера для звуковых волн. Человек справа будет слышать более короткие волны и более высокий тон, чем. человек слева.

Свет — это тоже волны, а поэтому подвержен эффекту Доплера. Если источник света двигается к нам, волна немного укорачивается, а если, наоборот, удаляется, волна удлиняется. Что касается света, мы воспринимаем разные длины волн как разные цвета. Из воспринимаемых нашими глазами цветов у красного самая большая длина волны, у синего — самая маленькая, а между ними располагаются все цвета радуги.

В кругах физиков хорошо известен анекдот об одном парне — назовем его Доплером, — который проехал перекресток на красный свет, и его остановил грубоватый полицейский:

— Вы что, не видели, что едете на красный?

— Извините, должно быть, я ехал настолько быстро, что красный свет казался зеленым.

Ну и дела! Могло ли это и впрямь оказаться правдой? Зеленый свет имеет более короткую длину волны, чем красный, поэтому, если Доплер ехал достаточно быстро, в принципе ничто не мешало ему воспринимать красный свет как зеленый. Однако если вдуматься, становится ясно: чтобы красный свет показался Доплеру зеленым, ему пришлось бы ехать с совсем уж невероятной скоростью — 200 миллионов километров в час. С такой скоростью можно обогнуть Землю менее чем за секунду. Так что Доплеру же лучше, если полицейский ему не поверит.

Получается, нужно разогнаться до нечеловеческих скоростей, чтобы ощутить четкий эффект Доплера на световых волнах, однако для звуковых волн достаточно и скорости автомобиля. Причина такой разницы в том, что свет и звук перемещаются с абсолютно разными скоростями. Действие эффекта Доплера зависит от того, насколько быстро движется источник волн по сравнению со скоростью самих волн. Как мы помним, звуковые волны на поверхности Земли перемещаются с вполне адекватной скоростью — 340 метров в секунду. Световые же волны распространяются со скоростью 300 000 километров в секунду (3–108 м/с). Поэтому нет ничего удивительного в том, что эффект Доплера не особо впечатляет, когда дело касается света и обычных скромных скоростей.

Для таких астрономов, как Фриц Цвикки и Вера Рубин, эффект Доплера при измерении скоростей был незаменим. Ключевая разница между движением автомобиля и космических тел, естественно, заключается в том, что звезды и галактики гораздо быстрее. Кроме того, с помощью измерительных приборов можно уловить крошечные изменения цвета, которые не различит даже самый опытный художник.

Чтобы измерить, насколько быстро звезда или галактика движутся к нам или от нас, достаточно измерить, насколько изменилась длина световых волн из-за эффекта Доплера. Измерить длины волн, достигших Земли, относительно просто. Но, чтобы найти изменения в длинах волн, нам также нужно знать, какая длина волны была бы у света, если бы источник не двигался. Как же ее вычислить? Мы ведь не можем приказать звезде и уж тем более галактике остановиться, чтобы измерить первоначальную длину волны.

Стоящие у обочин посты ДПС, ловящие лихачей, справляются с этой проблемой, излучая свою собственную волну. Для этого они используют радиолуч с определенной длиной волны. Достигнув машины, луч отражается от нее, но уже смещенный эффектом Доплера на другую длину волны, которая зависит от скорости автомобиля. В итоге, сравнивая длину волны излученную и принятую, прибор может определить скорость автомобиля.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.