Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос Страница 2

Книгу Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читать онлайн бесплатно

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос - читать книгу онлайн бесплатно, автор Алекс Беллос

Когда Джерри видит большое число, он сразу же делит его на простые числа — 2, 3, 5, 7, 11… то есть числа, которые делятся только на себя и единицу [2]. Благодаря этой привычке Джерри получал особое удовольствие от работы таксиста, поскольку у него перед глазами постоянно мельками номерные знаки автомобилей. Когда Джерри жил в Санта-Монике, где номерные знаки состоят из четырех-пяти цифр, он часто посещал четырехэтажную парковку возле местного торгового центра и не уходил оттуда до тех пор, пока не прорабатывал все номера.

Однако в Тусоне в номерах автомобилей всего три цифры, поэтому теперь Джерри почти не смотрит на них.

— Я обращаю внимание только на числа, в которых больше четырех цифр. Если же их меньше, это как раздавленное на дороге животное. Да, именно так! — возмущенно заявил он. — Ну же, покажите мне что-нибудь новенькое!

Синдром Аспергера — это психическое расстройство, при котором человек испытывает трудности в межличностном общении, но обладает уникальными талантами. В случае Джерри это невероятные способности к арифметическим вычислениям в уме. В 2010 году Джерри безо всякой подготовки принял участие в чемпионате мира по устному счету, проходившем в Германии, и получил титул «Самый универсальный вычислитель». Он стал единственным участником конкурса, набравшим максимальное количество баллов за выполнение задания, по условиям которого 19 пятизначных чисел за десять минут следовало разложить на простые множители. Больше никто даже не приблизился к этому результату.

Джерри выработал свою систему разбиения больших чисел на простые множители: перебирать простые числа в порядке возрастания, отсеивая сначала все четные числа, которые делятся на 2, потом все числа, которые делятся на 3, затем на 5 и т. д.

Джерри повысил голос:

— О да, мы просеиваем числа, детка! — Он начал вертеться. — Мы на сцене. Люди, давайте свои числа — мы просеем их для вас! Да! Джерри и решето!

— У меня есть два решета, — прервала его жена Мэри, сидевшая на диване рядом с нами. Мэри, музыкант и бывшая актриса массовок в сериале «Звездный путь», тоже страдает синдромом Аспергера, хотя у женщин он встречается гораздо реже, чем у мужчин. Пары с таким синдромом крайне редко вступают в брак; в 2005 году был снят фильм Mozart and the Whale («Моцарт и Кит») [3], в основу которого лег их необычный роман.

Иногда Джерри не удается разложить большое число на простые множители, а это означает, что данное число само является простым. Такие случаи вызывают у Джерри непередаваемые ощущения:

— Когда встречаешь новое простое число, это как будто смотришь на камни и находишь среди них что-то необычное. Нечто вроде бриллианта, который можно взять домой и положить на полку, — объясняет Джерри.

И, сделав паузу, добавляет:

— Новое простое число — это как новый друг [4].

Первые слова и символы для обозначения чисел появились около 5000 лет назад в Шумере, исторической области в Южном Двуречье, расположенной на территории современного Ирака. Шумеры придумывали для чисел названия, пользуясь имеющимися в их языке словами. Например, для обозначения единицы употреблялось слово ges («геш»), второе значение которого — мужчина или фаллос. Двойка обозначалась словом min («мин»), также символизирующим женское начало. Возможно, это подчеркивало то, что мужчина занимает доминирующее положение, а женщина — лишь дополнение к нему, или характеризовало мужской половой член и женскую грудь [5].

Изначально числа использовались для практических целей, таких как подсчет овец или расчет налогов, но при этом отображали и абстрактные закономерности, что делало их предметом глубоких размышлений. Одним из первых математических открытий было, пожалуй, разделение чисел на две категории: четные — целые числа, которые делятся на 2 без остатка (например, числа 2, 4 и 6); и нечетные — которые не делятся на 2 без остатка (например, 1, 3 и 5). Греческий мыслитель Пифагор, живший в VI веке до нашей эры, провозгласил нечетные числа мужскими, а четные — женскими, тем самым подтвердив отмеченную шумерами ассоциативную связь между единицей и мужчиной, а также двойкой и женщиной. Он утверждал, что нежелание делиться на два — это признак силы, тогда как склонность к такому делению — признак слабости. Пифагор дал следующее арифметическое обоснование своих выводов: нечетные числа главенствуют над четными точно так же, как мужчина главенствует над женщиной, поскольку сложение нечетного и четного чисел всегда дает в результате нечетное число.

Пифагор больше всего известен теоремой о треугольниках, о которой мы поговорим позже. Тем не менее его утверждение о гендерной принадлежности чисел доминировало в западной философской традиции более двух тысяч лет. В христианстве это нашло отражение в мифе о сотворении мира: Адама Бог создал первым, а Еву — второй. Единица символизирует единство, тогда как двойка — «грех как отклонение от изначального добра» [6]. Средневековая церковь считала нечетные числа, в отличие от четных, более сильными, добродетельными, праведными и приносящими удачу. Во времена Шекспира были широко распространены метафизические представления о нечетных числах. В комедии The Merry Wives of Windsor («Виндзорские насмешницы») Фальстаф заявляет: «Я верю в нечет и всегда ставлю на нечетные числа — говорят, счастье их любит» [7]. И эти предрассудки сохранились до наших дней. Мистическими по-прежнему считаются только нечетные числа, в частности магическое число три, приносящее удачу, число семь и несчастливое число тринадцать.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.