Характер физических законов - Ричард Фейнман Страница 2

Книгу Характер физических законов - Ричард Фейнман читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Характер физических законов - Ричард Фейнман читать онлайн бесплатно

Характер физических законов - Ричард Фейнман - читать книгу онлайн бесплатно, автор Ричард Фейнман

Вкратце история его такова. Еще древние, наблюдая за движением планет на небе, догадались, что все они, вместе с Землей, «ходят» вокруг Солнца. Позднее, когда люди забыли то, о чем знали прежде, это открытие заново сделал Коперник. И тогда возник новый вопрос: как именно планеты ходят вокруг Солнца, каково их движение? Ходят ли они по кругу и Солнце находится в центре или они движутся по какой-нибудь другой кривой? Как быстро они движутся? И так далее. Выяснилось это не так скоро. После Коперника снова настали смутные времена и разгорелись великие споры о том, ходят ли планеты вместе с Землей вокруг Солнца или Земля находится в центре Вселенной. Тогда человек по имени Тихо Браге [3] придумал, как можно ответить на этот вопрос. Он решил, что нужно очень внимательно следить за тем, где появляются на небе планеты, точно это записывать и тогда уже выбирать между двумя враждебными теориями. Это и было началом современной науки, ключом к правильному пониманию природы – наблюдать за предметом, записывать все подробности и надеяться, что полученные таким способом сведения послужат основой для того или иного теоретического истолкования. И вот Тихо Браге, человек богатый, владевший островом поблизости от Копенгагена, оборудовал свой остров большими бронзовыми кругами и специальными наблюдательными пунктами и записывал ночь за ночью положения планет. Лишь ценой такого тяжелого труда достается нам любое открытие.

Когда все эти данные были собраны, они попали в руки Кеплера [4], который и пытался решить, как движутся планеты вокруг Солнца. Он искал решение методом проб и ошибок. Однажды ему показалось, что он уже получил ответ: он решил, что планеты движутся по кругу, но Солнце лежит не в центре. Потом Кеплер заметил, что одна из планет, кажется Марс, отклоняется от нужного положения на 8 угловых минут, и понял, что полученный им ответ неверен, так как Тихо Браге не мог допустить такую большую ошибку. Полагаясь на точность наблюдений, он решил пересмотреть свою теорию и в конце концов обнаружил три факта.

Сначала он установил, что планеты движутся вокруг Солнца по эллипсам и Солнце находится в одном из фокусов. Эллипс – это кривая, о которой знают все художники, потому что она представляет собой растянутый крут. Дети тоже знают о нем: им рассказывали, что если продеть в кольцо бечевку, закрепить ее концы и вставить в кольцо карандаш, то он опишет эллипс (рис. 1).

Две точки A и B – фокусы. Орбита планеты – эллипс. Солнце находится в одном из фокусов. Возникает другой вопрос: как движется планета по эллипсу? Идет ли она быстрее, когда находится ближе к Солнцу? Замедляет ли движение, удаляясь от него? Кеплер ответил и на этот вопрос (рис. 2).

Характер физических законов

Рис. 1

Он обнаружил, что если взять два положения планеты, отделенных друг от друга определенным промежутком времени, скажем тремя неделями, потом взять другую часть орбиты и там – тоже два положения планеты, разделенных тремя неделями, и провести линии (ученые называют их радиус-векторами) от Солнца к планете, то площадь, заключенная между орбитой планеты и парой линий, которые отделены друг от друга тремя неделями, всюду одинакова, в любой части орбиты. А чтобы эти площади были одинаковы, планета должна идти быстрее, когда она ближе к Солнцу, и медленнее, когда она далеко от него.

Еще через несколько лет Кеплер сформулировал третье правило, которое касалось не движения одной планеты вокруг Солнца, а связывало движения различных планет друг с другом. Оно гласило, что время полного оборота планеты вокруг Солнца зависит от величины орбиты и пропорционально квадратному корню из куба этой величины. А величиной орбиты считается диаметр, пересекающий самое широкое место эллипса.

Так Кеплер открыл три закона, которые можно свести в один, если сказать, что орбита планеты представляет собой эллипс; за равные промежутки времени радиус-вектор планеты описывает равные площади и время (период) обращения планеты вокруг Солнца пропорционально величине орбиты в степени три вторых, т. е. квадратному корню из куба величины орбиты. Эти три закона Кеплера полностью описывают движение планет вокруг Солнца.

Спросим себя: что заставляет планеты двигаться вокруг Солнца? Во времена Кеплера некоторые люди отвечали, что позади планет сидят ангелы, машут крыльями и толкают планеты по орбитам. Позднее вы увидите, что этот ответ не так уж далек от истины. С той только разницей, что «ангелы» сидят в другом месте и толкают планету к Солнцу.

Тем временем Галилей исследовал законы движения самых обычных предметов, которые были у него под рукой. Изучая эти законы, производя различные опыты, чтобы выяснить, как скатываются шарики по наклонной плоскости, как качаются маятники и т. д., Галилей открыл великий принцип, который называется принципом инерции и состоит вот в чем: если на предмет ничто не действует и он движется с определенной скоростью по прямой линии, то он будет двигаться с той же самой скоростью и по той же самой прямой линии вечно. Как ни странно это звучит для тех, кто пытался заставить шарик вечно катиться по полу, но если бы эта идеализация была верна и на шарик ничто не действовало (например, трение о пол), то шарик все время катился бы с постоянной скоростью.

Затем наступила очередь Ньютона, который раздумывал над таким вопросом: а если шарик не катится по прямой линии, что тогда? И он ответил так: для того чтобы хоть как-нибудь изменить скорость, нужна сила. Например, если вы подталкиваете шарик в том направлении, в каком он катится, то он покатится быстрее. Если вы заметили, что он свернул в сторону, значит, сила действовала сбоку. Силу можно измерить произведением двух величин. Насколько меняется скорость за небольшой промежуток времени? Эта величина называется ускорением. Если ее умножить на коэффициент, называемый массой предмета, то произведение и будет силой. Силу можно измерить. Например, если мы привяжем к веревке камень и станем крутить его над головой, то почувствуем, что за веревку надо тянуть. Правда, когда камень летает по кругу, величина скорости не изменяется – зато изменяется ее направление. Значит, нужна сила, которая все время тянула бы камень к центру, и сила эта пропорциональна массе. Если мы возьмем два разных предмета и станем раскручивать сначала один, а потом другой с той же самой скоростью, то во втором случае потребуется сила, во столько раз большая, во сколько масса второго предмета больше массы первого. Таким образом, определив силу, необходимую для того, чтобы изменить скорость тела, мы можем вычислить его массу. Поэтому, решил Ньютон, планете, вращающейся вокруг Солнца, не нужна сила, чтобы двигаться вперед; если бы никакой силы не было, планета летела бы по касательной. Но на самом деле планета летит не по прямой. Она все время оказывается не в том месте, куда попала бы, если бы летела свободно, а ближе к Солнцу (рис. 3). Другими словами, ее скорость, ее движение отклоняются в сторону Солнца. Поэтому ангелы должны так махать крыльями, чтобы все время подталкивать планету к Солнцу.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.