Энергия и цивилизация - Вацлав Смил Страница 4

Книгу Энергия и цивилизация - Вацлав Смил читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Энергия и цивилизация - Вацлав Смил читать онлайн бесплатно

Энергия и цивилизация - Вацлав Смил - читать книгу онлайн бесплатно, автор Вацлав Смил

Базовые исследования вроде нашего требуют кодификации стандартных средств измерения. Две единицы стали общими для измерения энергии: калория – метрическая единица, и британская тепловая единица (бте). Сегодняшняя базовая научная единица для энергии – джоуль, она названа по имени английского физика Джеймса Прескотта Джоуля (1818–1889), который опубликовал первый точный расчет эквивалентности работы и тепла (примечание 1.3). Мощность обозначает объем энергетического потока, и ее первая стандартная единица – лошадиная сила – была определена Джеймсом Уаттом (1736–1819). Он хотел рассказать о своих паровых машинах так, чтобы все понимали, о чем идет речь, и выбрал очевидное сравнение с первичным движителем, который машины должны были заменить – с запряженной лошадью, поскольку в те времена их массово использовали на мельницах и для откачки воды (рис. 1.3, примечание 1.3).

Энергия и цивилизация

Рисунок 1.3. Две лошади поворачивают ось, ведущую к откачивающей воду лебедке. Франция, середина XVIII века, мануфактура по производству ковров (изображение из Encyclopedie, Дидро и д'Аламбер, 1769–1772). Обычная лошадь в то время не смогла бы работать с постоянной мощностью в одну лошадиную силу. Джеймс Уатт использовал преувеличенное значение, чтобы найти покупателей для паровой машины, способной заменить животных

Другим важным параметром является плотность энергии, т. е. количество энергии на единицу массы ресурса (примечание 1.4). Оно играет ключевую роль в питании: даже имеющиеся в изобилии продукты с низкой плотностью энергии никогда не станут базовыми. Например, обитатели Мексиканского нагорья до прихода испанцев в большом количестве поедали колючие плоды, которые с легкостью собирали со многих разновидностей кактусов из рода Opuntia (Sanders, Parsons and Santley 1979). Но как и у большинства фруктов, мякоть этих плодов большей частью (на 88 %) состоит из воды, в ней меньше 10 % углеводов, 2 % белка и 0,5 % жиров, и плотность энергии в данном случае всего лишь 1,7 Мдж/кг (Feugang et al. 2006). Это значит, что, например, женщина, выживающая только на плодах кактуса (предположим совершенно нереалистичным образом, что ей не нужны другие питательные вещества), должна будет съедать их по 5 килограммов каждый день, но то же самое количество энергии она может получить из 650 граммов кукурузы, съеденной в виде тортильи и тамала.

Примечание 1.3. Измерение энергии и мощности

Официальное определение джоуля – работа, выполненная, когда сила в один ньютон действует на дистанции в один метр. Другой вариант определения базовой единицы энергии – через требуемое количество тепла. Одна калория – количество тепла, необходимое, чтобы поднять температуру 1 см3 воды на 1 °C. Это очень мало: чтобы сделать то же самое с 1 килограммом воды, нужно в тысячу раз больше энергии, или одна килокалория (полный список префиксов к единицам измерения приведен в разделе «Базовые единицы измерения» в приложении). Учитывая эквивалентность тепла и работы, все, что нужно для превращения калорий в джоули – помнить, что одна калория равняется примерно 4,2 джоуля. Для до сих пор распространенной неметрической единицы, британской тепловой единицы, преобразование столь же простое. Одна бте равна примерно 1000 Дж (если точно, то 1055). Хороший сравнительный критерий – средняя дневная потребность в пище. Для взрослого в состоянии умеренной активности она обычно варьируется в пределах 2–2,7 Мкал, или примерно 8-11 Мдж, а 10 Мдж можно получить, съев 1 кг цельнозернового хлеба.

В 1782 году Джеймс Уатт начерно рассчитал, что лошадь на мельнице работает примерно со скоростью 32 400 футо-фунтов в минуту, и на следующий год он округлил это значение до 33 000 футо-фунтов (Dickinson 1939). Он предположил, что средняя скорость хода животного около 3 футов в секунду, но мы не знаем, где он взял значение средней тяги в 180 фунтов. Некоторые крупные лошади могли выдавать такую тягу, но большинство лошадей в Европе XVIII века не смогли бы обеспечить одну лошадиную силу из расчетов Уатта. Сегодняшний стандарт мощности, ватт, равен джоулю в секунду. Лошадиная сила составляет примерно 750 ватт (если точно, то 745,699). Потребление 8 Мдж пищи в день соотносится с номинальной мощностью в 90 Вт (8 Мдж/24 ч х 3600 с), меньше, чем у стандартной лампы накаливания (100 Вт). Тостер с двумя отверстиями требует 1000 Вт, или 1 КВт; небольшие машины выдают примерно 50 КВт; крупная электростанция на угле или ядерном топливе производит электричества на 2 ГВт.

Плотность мощности определяет потребление или производство энергии на единицу площади, и поэтому она является важной структурной характеристикой разных систем (Smils 2015b). Например, размер городов во всех традиционных обществах зависел от древесины как топлива, а возможность получения древесного угля очевидным образом ограничивалась изначально низкой плотностью мощности у производства фитомассы (примечание 1.5, рис. 1.4). Плотность мощности постоянного годового прироста деревьев в умеренном климате в лучшем случае равняется 2 % от плотности мощности энергетического потребления для традиционного городского обогрева, приготовления пищи и мануфактурного производства. Поэтому городам требовалась территория в 50 раз больше их собственной для обеспечения топливом. Именно это ограничивало их размеры, даже когда другие ресурсы, такие как вода и пища, имелись в изобилии.

Примечание 1.4. Значения плотности энергии продуктов питания и видов топлива

Энергия и цивилизация

Источники: значения плотности энергии для отдельных видов продуктов питания приведены в Watt (1973), Jenkins (1993) b USDA (2011).

Другая величина, приобретающая все большее значение с ростом индустриализации – эффективность преобразования энергии. Это соотношение выхода/ входа описывает работу преобразователей энергии, будь то печи, двигатели или элементы освещения. И хотя мы не можем ничего сделать с энтропийным рассеиванием, мы можем увеличить эффективность преобразования, снизив количество энергии, необходимое для выполнения отдельных задач (примечание 1.6). Существуют фундаментальные (термодинамические, механические) ограничения для этого улучшения, и мы уже во многих процессах подошли к лимиту практической эффективности, хотя в большинстве случаев, например, для широко распространенных преобразователей вроде двигателей внутреннего сгорания и осветительных приборов еще достаточно возможностей усовершенствования.

Энергия и цивилизация

Рисунок 1.4. Робота углежога в начале XVII века, Англия. Предоставлено: John Evelyn, «Silva»

Примечание 1.5. Плотность энергии растительного топлива

Фотосинтез превращает менее 0,5 % поступающего солнечного излучения в новую фитомассу. Лучшая годовая продуктивность древесного топлива для быстрорастущих видов (тополь, эвкалипт, сосна) составляет не больше чем 10 т/га, ну а в более засушливых регионах значение колеблется между 5 и 10 т/га (Smil 2015b). С плотностью энергии сухого дерева в среднем около 18 ГДж/т добыча в 10 т/га обеспечит плотность мощности около 0,6 Вт/м2: (10 т/га х 18 ГДж)/3,15 х 107 (секунд в год) = -5708 Вт; 5708 Вт/10000 м2/га = -0,6 Вт/м2. Большому городу XVIII века требовалось по меньшей мере 20–30 Вт/м2 на застроенную площадь для обогрева, приготовления пищи и мануфактурного производства, так что древесное топливо пришлось бы добывать с территории в 30–50 раз большей, чем сам город.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.