Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос Страница 40

Книгу Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос читать онлайн бесплатно

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос - читать книгу онлайн бесплатно, автор Алекс Беллос

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Y-образный маятник Блэкберна. Рисунок взят из научно-популярного издания 1879 года

Из книги: Alfred Marshall Mayer, Soundby, Macmillan and Co., 1879

Гармонограф викторианской эпохи представлял собой нечто среднее между ящиком письменного стола и старинными часами [100]. Как результат, так и сам процесс движения пера, создававшего все эти изображения, оказывал гипнотическое воздействие. Затухание колебаний, обусловленное потерей энергии из-за трения, образовывало кривые, которые закручивались по спирали внутрь по мере их приближения к неподвижной точке равновесия. Некоторые более крупные устройства могли поддерживать колебания на протяжении часа и даже больше, прежде чем маятники останавливались.

Гармонографы стали настолько популярны, что обусловили появление и других устройств, работающих по тому же принципу: симпалмограф, пендулограф, двойной маятник и маятник, совершающий гармонические колебания в четырех направлениях. В начале ХХ века был создан генератор сложных гармонических колебаний Крейтона и фоторатиограф, чертивший кривые на фотобумаге с помощью движущегося светового пучка. В 1950-х годах художник Джон Уитни собрал гармонограф из военного утиля, оставшегося после Второй мировой войны. Он купил блок управления зенитной артиллерийской батареей М5 (большой металлический ящик со множеством ручек и рычагов, представлявший собой первый аналоговый компьютер, который использовался для расчета направления выстрелов по вражеским самолетам) и переделал его так, чтобы вращающиеся детали могли передвигать пишущий элемент по закону простого гармонического колебания в двух направлениях. Уитни мог корректировать скорость и размах колебаний синусоиды в электронном режиме, что позволяло ему в гораздо большей степени контролировать процесс и устраняло последствия затухания колебаний. С помощью этого устройства Уитни создавал удивительные изображения, которые стали одними из самых известных за всю историю математического искусства, поскольку были использованы в заставке и на постерах к фильму Альфреда Хичкока Vertigo («Головокружение»), снятому в 1958 году. Закручивающиеся в водоворот, вызывающие головокружение концентрические петли являлись прекрасной визуальной метафорой для истерзанного внутреннего мира главного героя киноленты. Однако Уитни знаменит не только этими изображениями, а и тем, что его электронный гармонограф был также первым устройством для создания компьютерной анимации.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красивые вибрации: фигуры, созданные гармонографами

© Карл Симс, www.karlsims.com

Примерно в тот период, когда гармонографы вошли в моду в викторианских салонах, один парижский физик понял, что можно создавать аналогичные фигуры с помощью двух камертонов и пучка света [101]. Демонстрации, устраиваемые Жюлем Антуаном Лиссажу, относятся к числу самых красивых экспериментов XIX столетия. Когда камертон издает звук, его металлические зубцы колеблются согласно закону простого гармонического движения. Лиссажу прикрепил к одному камертону небольшое зеркальце и направил на него луч света таким образом, чтобы он отражался на экране в виде светового пятна. Когда камертон начинал вибрировать, пятно вытягивалось в горизонтальную линию. Пятно света очень быстро перемещалось то в одну, то в другую сторону, однако наблюдатели воспринимали это движение как линию, поскольку изображение каждого пятна сохраняется в нашей зрительной системе на долю секунды дольше, чем находится там на самом деле. Затем Лиссажу добавил еще один камертон, к которому тоже было прикреплено зеркало. Второй камертон размещался перпендикулярно первому с тем, чтобы луч света отражался зеркалом первого камертона, колеблющегося в одном направлении, на зеркало второго камертона, колеблющегося в перпендикулярном направлении, после чего попадал на экран. Другими словами, камертоны вели себя так же, как и маятники в гармонографе, перемещая луч света под воздействием двух конкурирующих гармонических колебаний. Однако вместо колебаний один раз в секунду или что-то около этого камертоны колебались с частотой сотни раз в секунду. Публика видела на экране поразительные изображения, известные в наше время как фигуры Лиссажу.

Разные системы расположения камертонов образуют разные кривые. Если два одинаковых камертона издают звук одной и той же высоты, то их синусоиды идентичны, а полученная кривая представляет собой одну из кривых в первом ряду на рисунке ниже: эллипс, прямую линию или окружность. Форма кривой зависит от того, в какой момент начинается каждое колебание по отношению к другому колебанию. Лиссажу корректировал данный процесс, меняя расстояние между камертонами. Если частота колебания одного камертона в два раза больше частоты колебаний другого, полученная кривая относится ко второму ряду изображений — это может быть парабола или кривая в форме восьмерки. В оставшихся рядах представленного ниже рисунка показаны фигуры Лиссажу для других целых значений соотношения между частотами синусоид. Если соотношение частот нельзя описать двумя целыми числами, луч света не вернется в исходную позицию, и полученное изображение будет нечетким.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Фигуры Лиссажу — иллюстрация из книги, опубликованной в 1875 году. В левом столбце изображений для каждого ряда указано соотношение частот синусоид

Из книги: John Tyndall, Sound (Third Edition), Longmans, Green and Co., 1875

От частоты колебания камертона зависит, какую ноту он издает. Например, при частоте 262 колебания в секунду он издает ноту «до» третьей октавы. Таким образом, благодаря экспериментам Лиссажу у музыкантов появился новый, более эффективный способ калибровки камертонов: вместо того чтобы определять их настройку на слух — использовать зрение. Квалифицированные специалисты применяют пучки света в своих мастерских. Если у двух камертонов отличается высота звука, значит, частота колебаний у них тоже разная, поэтому двойное отражение луча света дает размытую картинку. Специалисты выбирают один камертон в качестве эталона, а второй обрабатывают до тех пор, пока рисунок на стене не превратится в эллипс — это подтверждает, что оба камертона звучат на одной ноте.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.