Математика для любознательных (сборник) - Яков Перельман Страница 5

Книгу Математика для любознательных (сборник) - Яков Перельман читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Математика для любознательных (сборник) - Яков Перельман читать онлайн бесплатно

Математика для любознательных (сборник) - Яков Перельман - читать книгу онлайн бесплатно, автор Яков Перельман

Если бы вся окружающая нас вселенная претерпела любое искажение, зависящее от места и времени, при условии, что искажение распространяется на все твердые тела, в частности на все измерительные инструменты и на наше тело, - то не было бы никакой возможности это искажение обнаружить».

* * *

Микроген Лассвица обладает способностью изменять не только пространственные размеры, но и быстроту течения времени. И здесь следует отметить, что изменение темпа времени в любое число раз не может быть никакими средствами обнаружено, если оно распространяется на все явления, совершающиеся во вселенной (или в ее изолированной части, за пределы которой наблюдатель не может проникнуть). Это станет понятнее, если напомним, что единственным мерилом времени являются для нас пространственные промежутки на измерителе времени - на часовом циферблате, на звездном небе, и т. п. У нас нет никакой возможности убедиться, действительно ли часы идут равномерно, или Земля вращается равномерно, - как мы всегда допускаем. «Если бы сутки и их подразделения - часы, минуты, секунды - были неравномерны, если бы ход наших часов во времени менялся, если бы менялась и скорость вращения Земли вокруг оси и обращения вокруг Солнца, а также скорость обращения Луны вокруг Земли, если бы тому же закону изменяемости подвержены были и всякие иные мерила для времени, - мы не были бы в состоянии обнаружить этой изменяемости, и все осталось бы для нас по-старому» (Дзиобек). Не заметили бы мы никакой перемены в мире даже и в том случае, если бы «в некоторый момент все часы согласно остановились и прекратились все движения, все изменения в окружающем нас мире, а по истечении определенного промежутка времени все ожило бы вновь, продолжало двигаться и жить, - словно в сказке об окаменелом царстве, где с наивной смелостью предвосхищено то, что мы называем относительностью нашего мерила времени».

Мы видим, что мир вовсе не должен быть в действительности так неизменен, как думает большинство людей, полагаясь на привычные представления и на показания наших чувств. Напротив, мир может ежесекундно претерпевать самые фантастические изменения: уменьшаться или увеличиваться в любое число раз, «выворачиваться наизнанку» (т. е. заменяться симметричным ему миром), искажать всячески свою форму, вырастая в одних направлениях и сокращаясь в других, искривляться на всевозможные лады, может ускорять или замедлять темп событий, порою останавливая их вовсе - и никто из нас не в состоянии был бы обнаружить ни следа этих изменений. Волшебный микроген, о котором мечтал Лассвиц, даже несравненно более чудодейственный по своей силе, мог бы быть давно уже изобретен и совершать над нами свои парадоксальные метаморфозы - и никто из нас об этом не подозревал бы. Таковы следствия, неизбежно вытекающие из относительности пространства и времени [7].

Математика для любознательных (сборник) Машина времени

Извлечение из повести Г. Уэллса [8]

Математика для любознательных (сборник)

I. ВВЕДЕНИЕ

Путешественник во времени (вполне подходящее для него название) объяснял нам малодоступные пониманию вопросы. Его серые глаза блестели и мерцали; лицо, обыкновенно бледное, разгорелось от оживления. Мы же лениво восхищались серьезностью, с которой он выяснил свой новый парадокс (каковым мы в это время считали его идею), восхищались также и плодовитостью ума этого человека. Вот что он говорил:

- Вы должны внимательно следить за моими словами, потому что я постараюсь опровергнуть несколько общепринятых идей. Я утверждаю, например, что та геометрия, которой нас учили в школе, основана на неправильных представлениях.

- Вы, кажется, хотите начать со слишком трудного для нас вопроса, - сказал Фильби, известный спорщик.

- Я совсем не требую, чтобы вы принимали мои слова на веру, без всякого обоснования. Но вы скоро согласитесь с частью моих положений, а это все, чего я требую. Вам, конечно, известно, что математической линии, линии без малейшей толщины, реально не существует. То же самое можно сказать и относительно математической плоскости. То и другое - отвлеченности.

- Правильно, - подтвердил психолог.

- Точно также куб, имеющий только длину, ширину и толщину, не может существовать реально.

- Против этого я возражаю, - сказал Фильби. - Твердое тело, конечно, существует.

- Так думает большинство. Но может ли существовать «мгновенный» куб?

- Я вас не понимаю, - сказал Фильби.

- Можно ли говорить о реальном бытии куба, который на самом деле не существовал ни малейшего промежутка времени?

Фильби задумался.

- Ясно, - продолжает Путешественник, - что каждое реальное тело должно иметь протяжение в четырех измерениях, то есть обладать длиной, шириной, толщиной и продолжительностью существования. Существует четыре измерения: три мы называем измерениями пространства, четвертое - времени. Но люди совершенно неправильно склонны считать четвертое измерение чем-то существенно отличным от трех остальных. Это происходит потому, что наше сознание в течение всей жизни, от ее начала до конца, движется в одном направлении, вдоль времени. Люди совершенно упускают из виду упомянутый факт; между тем это-то и есть четвертое измерение, хотя многие толкуют о нем, совсем не зная, о чем они говорят. В сущности, я указываю вам только новый взгляд на время. Существует всего одно различие между временем и каким-либо другим из трех измерений пространства; вот оно: наше сознание движется вдоль времени. Но многие трактуют эту идею совершенно неправильно. Вы все слыхали, что говорят о четвертом измерении?

Пространство, по мнению наших математиков, имеет три измерения. Между тем, некоторые философски настроенные люди спрашивали, почему всегда говорят только о трех измерениях; почему не может существовать другого направления под прямыми углами к остальным трем? Ученые пытались даже создать геометрию четвертого измерения. Вы все знаете, что на плоской поверхности, имеющей всего два измерения, легко изобразить предмет с тремя измерениями; упомянутые же ученые полагают, что с помощью трех измерений они могли бы построить модель четырехмерную, если бы только овладели надлежащей перспективой.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.