Хаос. Создание новой науки - Джеймс Глик Страница 6

Книгу Хаос. Создание новой науки - Джеймс Глик читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Хаос. Создание новой науки - Джеймс Глик читать онлайн бесплатно

Хаос. Создание новой науки - Джеймс Глик - читать книгу онлайн бесплатно, автор Джеймс Глик

Ученый решил внимательно изучить, каким образом разошлись два почти идентичных исходно графика. Он скопировал одну из полученных кривых на прозрачную бумагу и наложил ее на вторую, чтобы проследить отклонения. Первые максимумы почти совпали, но потом одна из линий начала слегка отставать. Когда оба графика достигли второго максимума, их фазы уже определенно различались. К третьему и четвертому максимумам все сходство исчезало.

Хаос. Создание новой науки

Расхождение двух графиков погоды. Эдвард Лоренц заметил, что его программа моделирует поведение погодных процессов, которые хотя и берут начало примерно в одной точке, дальше все более и более отклоняются друг от друга, пока сходство в конце концов не исчезает. (Из распечаток Лоренца 1961 г.)

Был ли в том виноват несовершенный компьютер? Лоренц мог предположить, что либо его подвела машина, либо модель изначально была сконструирована неудачно, – по крайней мере, он должен был так подумать. Но, руководствуясь математической интуицией, которую коллеги Лоренца оценили не сразу, исследователь внезапно осознал: что-то выбилось из накатанной колеи! Практическая важность открытия могла оказаться огромной, и, хотя уравнения Лоренца являлись лишь грубой имитацией погоды на земном шаре, он уверовал, что ему открылась сущность реальной атмосферы. И впервые понял: долгосрочное прогнозирование погоды обречено [25].

«Нам не всегда сопутствовала удача в наших изысканиях, и теперь мы нашли причину, – говорил ученый. – Думаю, люди полагали, что возможно предсказать погоду на длительный период времени, потому что в мире существуют физические феномены, которые вполне поддаются прогнозированию, например затмения и океанические течения. Я никогда не считал прогнозы приливов и отливов предсказаниями, воспринимая их как факты, хотя, безусловно, это предсказания. Явления приливов и отливов, как, впрочем, и атмосферные процессы, вряд ли можно считать простыми, но в обоих случаях имеются периодические компоненты, за счет которых можно предугадать, например, что следующее лето будет теплее зимы. Для погоды в подобном утверждении как будто нет ничего нового – мы это и так знаем. Зато для приливов прогнозируемая часть как раз представляет интерес, а составляющая, не поддающаяся прогнозу, достаточно мала, если только не наступит шторм. Итак, если приливы и отливы могут быть с достаточной точностью предсказаны на несколько месяцев вперед, то вполне резонно звучит вопрос: почему мы не в силах проделать то же самое в отношении атмосферы? В конце концов, это просто еще одна текучая среда, и ее законы примерно так же сложны. Однако я понял, что любая непериодичная физическая система непредсказуема» [26].

Пятидесятые и шестидесятые годы XX века стали временем неоправданного оптимизма по поводу возможностей предсказания погоды [27]. Газеты и журналы наперебой твердили о надеждах, возлагаемых на новую науку – даже не столько на прогнозирование, сколько на изменение погодных условий и управление ими. Развивались сразу две технические новации: цифровые компьютеры и искусственные спутники Земли, и оба новшества использовались в международном проекте, названном Глобальной программой исследования атмосферы. Говорили даже, что человечество освободится от произвола стихий, став повелителем, а не жертвой атмосферы. Кукурузные поля накроют геодезическими куполами, небосклон очистят от туч самолетами, ученым станет ясен механизм запуска и остановки дождя.

Эти иллюзии были посеяны Нейманом, создавшим свой первый компьютер с твердым намерением использовать вычислительную машину и для управления погодой. Он окружил себя метеорологами и захватывающе рассказал о своих планах коллегам-физикам. У Неймана были особые математические причины для оптимизма. Он полагал, что сложная динамическая система имеет точки неустойчивости – критические точки, в которых слабый толчок может привести к огромным последствиям, как это происходит с мячиком, балансирующим на вершине холма. Нейман верил, что с помощью компьютера ученые смогут рассчитать уравнение движения жидкости и предсказать погоду на следующие несколько дней [28]. После этого, если центральный комитет метеорологов сочтет нужным ее изменить, в небо поднимутся самолеты, чтобы оставить за собой дымовую завесу или разогнать облака. Великолепная перспектива! Однако Нейман не учел вероятность хаоса, при котором неустойчива каждая точка.

К 1980-м годам разветвленный и дорогостоящий аппарат служащих рьяно взялся выполнять поставленную Нейманом задачу, по крайней мере ту ее часть, которая была связана с составлением прогнозов [29]. На окраине одного из городов штата Мэриленд, близ Вашингтонской кольцевой автострады, в простом, похожем на куб здании, которое обилием радиоантенн и радаров, установленных на крыше, напоминало разведцентр, трудились ведущие ученые Америки. Здесь мощнейший суперкомпьютер производил моделирование, напоминавшее разработки Лоренца, но лишь по сути и духу. Royal МсВее мог выполнять шестьдесят умножений в секунду, тогда как быстродействие новой машины ControlDataCyber 205 составляло миллионы операций с плавающей запятой в секунду. Там, где Лоренц использовал двенадцать уравнений, современный компьютер расправлялся с системой, состоявшей из пятисот тысяч уравнений. Этой машине был известен механизм колебаний температуры воздуха при конденсации и испарении жидкости. Виртуальные воздушные потоки зарождались в компьютерных горных цепях. Информация, поступавшая со всего земного шара, со спутников, самолетов и кораблей, вводилась в компьютер ежечасно. В результате по точности прогнозов Национальный метеорологический центр США занял второе место в мире.

А первое место занял Европейский центр среднесрочных прогнозов погоды, расположенный в английском Рединге, небольшом университетском городке в часе езды от Лондона. Скромное современное здание из стекла и кирпича, затененное деревьями, построили в годы торжества идеи общего рынка, когда большинство государств Западной Европы решили действовать сообща, объединив интеллектуальные и денежные ресурсы для предсказания погоды. Европейцы приписывали свои успехи молодости сменяющих друг друга сотрудников, которые не состояли на государственной службе, и суперкомпьютеру Cray, который был на порядок совершеннее американского аналога.

Прогнозирование погоды стало отправной точкой, с которой началось применение компьютеров для моделирования сложных систем. Использованная методика сослужила хорошую службу множеству представителей естественных, точных и гуманитарных наук. С ее помощью ученые пытались предугадать буквально все, начиная с динамики маломасштабных жидкостных потоков, изучаемых конструкторами двигателей, и заканчивая денежными потоками, изучаемыми экономистами. В самом деле, к 1970-1980-м годам компьютерные прогнозы экономического развития напоминали глобальные предсказания погоды. Модели, представлявшие собой хитросплетенную, до некоторой степени произвольную паутину уравнений, преобразовывали известные начальные условия – будь то атмосферное давление или денежную массу – в будущие тенденции. Программисты надеялись, что неизбежные упрощающие предположения не слишком сильно искажают истину. Если на выходе получалось нечто странное – наводнение в Сахаре или повышение процентных ставок на несколько порядков, – уравнение подправляли таким образом, чтобы подогнать результат под ожидаемый. Как это ни печально, эконометрические модели мало соответствовали реальности, но это не мешало многим людям, которым следовало бы лучше понимать, что к чему, вести себя так, будто они верили в итоги изысканий. Прогнозы экономического роста и безработицы составлялись с точностью до сотых, а то и тысячных долей [30]. Правительства и финансовые институты субсидировали прогнозирование и действовали в соответствии с ним – зачастую в силу необходимости, а иногда просто желая получить лучший результат. Возможно, они все же знали, что показатели вроде «потребительского оптимизма» не столь хорошо поддаются измерению, как, например, влажность воздуха, и что дифференциальных уравнений, идеально отражающих политические движения или изменения в мире моды, еще никто не создал. Но лишь немногие осознавали, сколь ненадежен был сам процесс компьютерного моделирования, даже в тех случаях, когда исходным данным вполне можно доверять, а законы заимствованы из физики, как в случае с предсказанием погоды.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.