Искусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер Страница 7

Книгу Искусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Искусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер читать онлайн бесплатно

Искусство статистики. Как находить ответы в данных - Дэвид Шпигельхалтер - читать книгу онлайн бесплатно, автор Дэвид Шпигельхалтер

• неупорядоченными: страна рождения человека, цвет автомобиля или больница, где делали операцию;

• упорядоченными: воинские звания;

• сгруппированными числами: степени ожирения, которые часто определяются в терминах пороговых значений по индексу массы тела (ИМТ) [29].

Для отображения качественных данных часто используются круговые диаграммы, что позволяет составить представление о размере каждой категории по занимаемой ею части круга. Однако здесь вероятны проблемы с наглядностью, например при попытке изобразить на одной диаграмме слишком много категорий или использовать трехмерное представление, искажающее площади. Рис. 1.2 показывает весьма уродливый пример, смоделированный с помощью Microsoft Excel, где представлены данные из табл. 1.1 о результатах операций на сердце для 12 933 детей.

Искусство статистики. Как находить ответы в данных

Рис. 1.2

Процентные доли операций на сердце у детей в каждой больнице, отображенные на круговой 3D-диаграмме из Excel. Это крайне неудачное представление данных зрительно увеличивает категории на переднем плане, делая невозможным визуальное сравнение между больницами

Использование сразу нескольких круговых диаграмм, как правило, не очень хорошая идея, поскольку это затрудняет сравнение относительных размеров областей разной формы. Сравнения лучше проводить с помощью гистограмм (столбчатых диаграмм) – при этом хорошо видна разница в высоте или длине. Рис. 1.3 – более простой и понятный пример горизонтальной гистограммы, где длина горизонтальной полосы отражает долю операций каждой больницы.

Искусство статистики. Как находить ответы в данных

Рис. 1.3

Процентные доли всех операций на сердце у детей, проведенных в каждой больнице: более четкое представление с помощью горизонтальной гистограммы

Сравнение двух долей

Итак, увидев, как с помощью гистограммы можно элегантно сравнить несколько пропорциональных долей, было бы логично полагать, что сравнение двух долей вообще тривиальное дело. Однако когда эти доли представляют собой оценку рисков причинения какого-либо вреда, метод их сравнения становится серьезным, дискуссионным вопросом. Типичный пример:

Каков риск развития рака от употребления сэндвичей с беконом?

Каждому из нас знакомы громкие заголовки в СМИ, предупреждающие о том, что какая-то вполне обыденная вещь увеличивает риск возникновения чего-нибудь плохого. Я обычно называю такие истории «кошки вызывают рак». Например, в ноябре 2015 года Международное агентство по изучению рака (МАИР) Всемирной организации здравоохранения объявило обработанное мясо «канцерогеном группы I», то есть отнесло его к той же категории, что сигареты и асбест. Естественно, это привело к появлению устрашающих заголовков. Так, Daily Record написала, что «по мнению экспертов, бекон, ветчина и сосиски подвергают такому же риску развития рака, как и сигареты» [30].

МАИР попыталось подавить панику, подчеркнув, что попадание в группу I всего лишь говорит о существовании повышенного риска рака, а не о реальной величине самого риска. В пресс-релизе МАИР сообщалось, что ежедневное употребление 50 граммов обработанного мяса связано с повышением риска развития рака кишечника на 18 %. Звучит тревожно, но так ли это на самом деле?

Величина 18 % известна как относительный риск, который отражает разницу в опасности развития рака кишечника (колоректального рака) у двух групп людей: ежедневно употребляющих 50 граммов обработанного мяса (например, сэндвич с двумя ломтиками бекона) и тех, кто его не ест. Статистики наложили этот относительный показатель на каждую отдельную группу риска и посмотрели, какие абсолютные значения он принимает в каждом случае, что позволило выявить абсолютный риск этого исхода для каждой группы. Они пришли к выводу, что при нормальном ходе вещей примерно 6 из каждых 100 человек, которые не едят бекон ежедневно, заболеют раком кишечника. Если же 100 таких человек ели бы бекон ежедневно всю жизнь, то, согласно отчету МАИР, можно было бы ожидать, что больных будет на 18 % больше, то есть не 6, а 7 человек из 100 [31]. Один дополнительный случай рака кишечника на 100 человек, ежедневно употреблявших бекон в течение жизни, звучит вовсе не так впечатляюще, как относительный риск (увеличение на 18 %), и позволяет оценивать риски более объективно. Нужно отличать то, что действительно опасно, от того, что только выглядит пугающе [32].

Пример с сэндвичем показывает, что риски полезно выражать в ожидаемых частотах, то есть вместо того, чтобы обсуждать доли или вероятности, просто спросить: «А что это означает для группы в 100 (или 1000) человек?» Психологические исследования продемонстрировали, что такой метод улучшает понимание: утверждение, что потребление мяса приводит к «18-процентному повышению риска», можно считать манипулятивным, поскольку мы знаем, что такая форма подачи информации создает преувеличенное впечатление о степени опасности [33]. На рис. 1.4 представлена ожидаемая частота случаев рака кишечника в группе из 100 человек в виде пиктографической диаграммы.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.