Нанонауки. Невидимая революция - Лоранс Плевер Страница 8

Книгу Нанонауки. Невидимая революция - Лоранс Плевер читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Нанонауки. Невидимая революция - Лоранс Плевер читать онлайн бесплатно

Нанонауки. Невидимая революция - Лоранс Плевер - читать книгу онлайн бесплатно, автор Лоранс Плевер

ГОРДОН МУР РАЗБИРАЕТСЯ С НЕРАЗБЕРИХОЙ

Чтобы производить интегральные схемы в больших количествах, нужна была технология, обеспечивавшая автоматизацию сборки электронных компонентов на подложке. Поначалу вопрос о миниатюризации даже не поднимался — всем казалось очевидным, что новинка будет внедрена незамедлительно, например в электронике, устанавливаемой на военных реактивных снарядах и ракетах. Электроника следит за устойчивостью полета, и потому такая управляющая система включает в себя гироскоп, замеряющий отклонение от курса, и систему управления подачей топлива в реактивный двигатель. Инженеры-электронщики в союзе с армией физиков извлекли немалые выгоды из космической программы «Аполлон», обеспечивающей постоянный запрос на все более миниатюрную микроэлектронику. В реактивном снаряде или ракете тесно, а каждый лишний грамм груза — это дополнительный расход топлива, поэтому соображения места и массы имеют первостепенное значение. К тому же чем мельче транзистор, тем выше его быстродействие. А если транзисторов в интегральной схеме (в том же объеме) становится больше, то и возможностей у микросхемы прибавляется. Так что плотность расположения транзисторов начиная с 1960-х годов неуклонно возрастала, подчиняясь эмпирической закономерности, замеченной в 1965 году Гордоном Муром.

Защитив диплом в Калифорнийском университете, где он какое-то время сотрудничал с одним из изобретателей транзистора Уильямом Шокли, Гордон Мур вскоре начал работать в фирме Fairchild Semiconductors. В апреле 1965 года главный редактор американского журнала Electronics попросил Мура написать статью о перспективах электроники [9]. На момент написания статьи в самых сложных интегральных схемах содержалось десятка три электронных элементов, в том числе несколько транзисторов. Не так уж много, но Гордон Мур верил в эту технологию. Приглядевшись к темпам ее развития, он заметил: после изобретения интегральной схемы число компонентов за год выросло с четырех до восьми, а еще через год — до 16. Получалось, что примерно за год количество компонентов удваивается. Вовсе не думая об открытии или тем более навязывании какого-то закона собственного имени, Мур просто высказал надежду на появление все более миниатюрных электронных схем и тех деталей, из которых они строятся, предсказывая, что при этом схемы будут усложняться и дешеветь.

О том, что случится в будущем, Мур, конечно, мог только догадываться, но он был уверен: невероятный курс на немыслимую миниатюризацию взят. А назвал это его простенькое опытное — эмпирическое — наблюдение «законом Мура» вовсе не сам Мур, а преподаватель Калифорнийского технологического института Карвер Мид. Мур же в 1975 году подправил «свой» закон: плотность размещения компонентов на подложке интегральной схемы удваивается каждые два года. Между тем Мур познакомился с Робертом Нойсом, одним из изобретателей интегральной схемы, и в июле 1968 года Мур и Нойс зарегистрировали фирму Intel Corporation, которая в 1971 году выпустила первый микропроцессор [10] — микросхему, среди компонентов которой насчитывалось 2250 транзисторов. После этого закон Мура точно предсказывал рост плотности транзисторов в объеме микросхемы — в 2007 году их стало более 250 миллионов! Что и говорить — рост молниеносный.

Причем транзисторы не только становились меньше: они и работали все лучше и лучше. В грубом приближении уполовинивание объема равносильно удвоению быстродействия, поскольку электронам приходится преодолевать вдвое меньшее расстояние. И мощность, рассеиваемая на транзисторе, тоже уменьшается. Но поскольку плотность размещения транзисторов учетверилась, то общее количество рассеиваемого тепла осталось тем же самым. Зато способности к счету возросли в восемь раз. А ведь за сорок лет размеры уменьшились не вдвое, как в нашем примере, а в сто раз с лишним! Следствия налицо: если первая электронно-вычислительная машина весила 50 т и потребляла 25 кВт, выполняя лишь какую-то сотню команд в секунду, то любой нынешний микропроцессор весит считаные граммы, выполняет за секунду сотни миллионов команд и потребляет ничтожную энергию — во многие тысячи раз меньше, чем первые ЭВМ!

Времени-то прошло всего ничего, а какое продвижение! И сколько новшеств! И каких! Правда, если честно, то ни единое из этих новшеств не поменяло ни принципов функционирования транзистора, ни способов производства интегральных схем. И сегодняшние микросхемы изготавливаются теми же методами маскировки и гравировки — их окрестили литографией, — которыми по большому счету воспользовался Джоуль, когда ему понадобилось проградуировать свой сверхточный термометр. Только Джоуль резал воск острым ножом, а теперь гравируют лучом света. Оптическая литография (она же — фотолитография) состоит в том, что свет проходит через маску и освещает светочувствительную смолу, нанесенную тонким слоем на кремниевую пластинку. Маска — это трафарет, непрозрачные участки которого оберегают те места на кремниевой пластинке, которые не должны освещаться; так что свет воспроизводит на смоле узор маски — рисунок электронной схемы с ее транзисторами и другими деталями, включая металлические дорожки, служащие соединительными проводниками.

Поскольку маска прилегает к смоле не слишком плотно, а находится на каком-то удалении от нее, воспроизводимый на слое смолы узор получается несколько размытым — дорожки, например, выходят более широкими, чем на самой маске. А транзисторы нужны маленькие — чем меньше, тем лучше. Чтобы сфокусировать луч света (и получить дорожку поуже), применяют оптические линзы — вроде известных увеличительных или зажигательных стекол, фокусирующих солнечные лучи. Благодаря линзам, узор на маске можно делать большим по размеру и, значит, более точным и с большими подробностями (линзы все равно сделают его маленьким, таким, как потребуется — или удастся). После облучения смолу удаляют, и облученные участки кремния становятся задуманной микросхемой, со всеми ее транзисторами и прочими компонентами. Для удаления смолы кремний промывают кислотой — так же как Джоуль удалял со стекла пчелиный воск. Но точность операций теперь много выше. Если Джоуль своим ножом наносил риски длиной 50 мкм (то есть 50 тыс. нанометров), то в конце 1960-х фотолитография обеспечивала стократно лучшую точность, позволяя «нарисовать» транзистор в квадрате со стороной в 10 000 нм. В 2006 году промежуток между входом и выходом транзистора составляло всего 90 нм: иначе говоря, на пятнышке размером с ноготь теперь умещается более 80 миллионов транзисторов! В 2007 году появились интегральные схемы с расстоянием между входным и выходным выводами транзистора 65 нм, а в 2008 году этот показатель обещают сократить до 45 нм. Эти транзисторы уже в сто раз меньше красного кровяного тельца!

ИГОЛКА В СТОГЕ СЕНА

Ключевая роль в этой головокружительной миниатюризации принадлежит фотолитографии. Эта технология похожа на рисование тонюсенькой кисточкой, которой можно вычерчивать самые меленькие узоры. А чем тоньше линии этих узоров, тем тоньше гравировка на поверхности полупроводника, и добиваться «утонченности» можно, уменьшая длину волны используемого света. Разрешение — так называется наименьшее расстояние между двумя соседними (разными и потому различимыми) точками на схеме — определяется как раз этой длиной волны. Чем она короче, тем тоньше могут быть воспроизводимые узоры и тем лучше будет разрешение. Сначала полупроводник освещали видимым светом (длина волны от 400 до 800 нм), затем ультрафиолетовыми лучами (350–450 нм), потом жестким ультрафиолетом (220–310 нм), а теперь применяют лучи с длиной волны в 193 нм. Сегодня (с транзисторами величиной порядка 45 нм) предполагается применить иммерсионную фотолитографию. «Иммерсия» значит погружение — в этом случае кремний покрывается жидкостью; с поверхности кремния маска покажется увеличенной — жидкость действует как дополнительная линза, и поэтому можно использовать ту же длину волны для формирования транзисторов меньшего размера.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.