История математики - Ричард Манкевич Страница 29
История математики - Ричард Манкевич читать онлайн бесплатно
Преобразование сферической Земли в плоскую карту всегда будет приводить к некоторым искажениям, и главная задача картографа — определение, какие факторы приводят к наибольшим искажениям, а какие — к наименьшим. Конформная проекция минимизирует искажение углов и форм объектов, в равновеликой проекции очень точны значения площадей, а в равнопромежуточной — расстояния. Как мы увидим в дальнейшем, к картам континентальных массивов и изображениям морей выдвигаются совершенно разные требования.
После того как в Европе с начала XIV века стали развиваться мореплавание и торговля, начали появляться портуланы (от итальянского слова «portolano», первоначально обозначавшего лоцию — письменные указания для мореплавателей). Они представляли собой сетку из прямых линий, или румбов, призванных помогать мореплавателям в планировании маршрутов вокруг Европы и по Средиземноморью. Главным образом портуланы делались в Венеции, Генуе и на Майорке. Эти «дедушки» нынешних лоций были удивительно точными, даже при том, что неясно, учитывалась ли в них какая-либо проекция. До сих пор ведутся споры о том, насколько активно использовались компасы (китайское изобретение), а также об объемах астрономических знаний, необходимых для навигации. Но после открытия Америки и выхода первого печатного издания «Географии» Птолемея все было готово для появления более точной карты мира. «География» Птолемея повторно появилась в Европе уже в XV веке: она впервые была напечатана в Болонье в 1477 году. В период Ренессанса использовались различные виды проекций, порой просто по эстетическим причинам. В качестве примера можно привести популярную овальную карту мира, впервые использованную Франческо Росселли (1445–1513) в 1508 году. Эти проекции были основаны скорее на графических построениях, нежели на использовании тригонометрических формул.
Герхард Меркатор (1512–1594), которого называли «Птолемем нашего времени» создал первую проекцию специально для того, чтобы помочь мореплавателям. Меркатор учился в Лёвенском университете, где получил степень по философии, а затем продолжил образование, изучая математику, астрономию и картографию. Он также стал мастером-гравером и специалистом по изготовлению оптических инструментов. С середины 1500-х годов он составил множество карт, включая карты Фландрии и Палестины. В 1544 году Меркатор был арестован за ересь, но вскоре, благодаря активной защите университета, его освободили, после чего он переехал в Дуйсбург (ныне Германия), и в 1564 году стал придворным космографом герцога Вильгельма. Именно в Дуйсбурге в 1569 году он создал известную Меркаторову проекцию для карты мира. Ее новизна заключалась в том, что линии румбов изображены на карте в виде прямых, что значительно облегчало навигацию для мореплавателей. На сфере, если корабль отправился в путь под определенным румбом к меридиану (если это не точное движение на север, юг, восток или запад), его путь будет представлять собой кривую на сфере; фактически, если бы корабль мог плыть непрерывно, то его путь представлял бы собой спираль к одному из полюсов. Преобразование румбов в прямые линии значительно облегчало задачу мореплавателей. Другое преимущество этой системы заключается в том, что проекция Меркатора сохраняет углы, так что при смене курса, скажем, на 30°, новая линия румба будет располагаться под углом 30° к предыдущему курсу. С тех пор эта проекция стала самой популярной в картографии, хотя сильно искажала контуры на высоких широтах и некоторые хотели бы заменить ее равновеликой проекцией, вроде той, что не так давно была названа в честь Арно Петерса.
Математический анализ проекции Меркатора впервые провел английский математик и картограф Эдвард Райт (1561–1615) в книге «Некоторые ошибки в навигации» (1599). В том же году в «Книге путешествий» Ричарда Хаклута была опубликована карта мира Райта, основанная на проекции Меркатора. Когда ученые узнали больше о земной и небесной сферах, приобрели популярность двойные глобусы, — они чаще всего использовались для обучения, но были также символами нового знания: земной шар в таких моделях был заключен в шарнирно устроенную небесную сферу. В связи с увеличением точности астрономических наблюдений и с началом великих геодезических проектов во Франции, Великобритании и других европейских странах, возникла необходимость постоянного и регулярного обновления карт.
Но, чтобы создавать точные карты, нужно было безошибочно определить широту и долготу ключевых точек поверхности. Найти широту всегда было довольно просто — она соответствовала высоте небесного полюса. Днем использовалось положение Солнца с применением таблиц склонения, по которым можно было определить угловое расстояние Солнца от экватора в любой день года. Однако определить долготу было намного труднее. Теоретически все было ясно: считая нулевой меридиан основой для измерения времени, сдвиг на каждые 15° долготы от меридиана соответствовал отклонению местного времени от меридианного на один час. Местное время можно было установить астрономически или при помощи солнечных часов, но при этом надо было знать точное время на меридиане. Сначала предлагалось использовать Луну как своего рода ночные часы, отмеряющие время, когда она пересекает небо. Но Луна движется по небу крайне неравномерно, а морские плавания были настолько долгими, что такой метод можно было применять лишь тогда, когда у навигатора имелись таблицы движения Луны, расписанные на много лет вперед. Именно с этой целью в 1675 году была основана Гринвичская королевская обсерватория. Лишь в 1767 году королевский астроном Невил Маскелайн (1732–1811) издал свой «Навигационный альманах», в который входили таблицы угловых расстояний до Луны, измеренные через каждые 3 часа в течение всего года. К тому времени был уже почти готов морской хронометр Джона Харрисона и вскоре стал самым распространенным методом вычисления долготы во время похода в открытом море. Точные часы, установленные на борту судна, показывают время на меридиане, значит, необходимо определить местное время по Солнцу и звездам. Разница между этими двумя показателями и даст долготу судна.
Создание проекции еще более усложнилось, когда стало ясно, что Земля не идеальная сфера, а сплющенный с полюсов сфероид — сфера, полюса которой немного уплощены. Рисунок Земли, сжатой у полюсов, который Ньютон опубликовал в своих «Началах», был в конечном счете подтвержден экспериментально. Если Земля сплющена на полюсах, то при перемещении от экватора к полюсу длина одного градуса широты должна увеличиться, точно так же, как благодаря гравитации должно увеличиться ускорение. Для того чтобы измерить оба явления, были организованы целые экспедиции. В 1735 году Парижская академия наук организовала экспедиции в Лапландию и Перу с целью измерить разницу в градусах долготы возле полюса и в районе экватора. Классический опыт Христиана Гюйгенса, в котором был использован простой маятник, показал, что период его колебаний зависит от величины гравитационного ускорения. Рассогласование было замечено еще в 1672 году, когда маятник, отбивающий время с точностью до секунды в Париже, пришлось укоротить, чтобы он показывал то же самое время в Кайенне. К сожалению, ошибки наблюдения обычно приводили к несопоставимым результатам. Некоторые даже считали, что Земля — вытянутый сфероид, то есть удлиненный, а не сглаженный на полюсах. В 1832 году американский математик Натаниэль Баудич (1773–1838) получил 52 измерения из самых разных точек земного шара — от Лапландии до мыса Доброй Надежды. К переводу труда французского математика, физика и астронома Пьера Симона Лапласа (1749–1827) «Небесная механика» он добавил свой анализ этих результатов и рассчитал степень сплющивания (эллиптичность) Земли, которая составила 1/297. Почти сто лет спустя это значение было принято практически во всем мире.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments