Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли Страница 5

Книгу Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли читать онлайн бесплатно

Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли - читать книгу онлайн бесплатно, автор Барбара Оакли

Часто задача впервые попадает в мозг тогда, когда вы фокусируете внимание на словах — читаете книгу или просматриваете конспект лекции. Осьминог, олицетворяющий ваше внимание, активирует сфокусированное состояние мозга. Изначально присматриваясь к задаче, вы думаете напряженно, тесно поставленные буфера запускают мысль по знакомым нейронным путям, связанным с уже известными вам понятиями. Мысли легко пробегают по проторенным маршрутам и быстро находят решение. Однако в математике и естественных науках даже минимальные сдвиги в условиях задачи могут неузнаваемо ее изменить — и решить ее становится намного сложнее.

Думай как математик. Как решать любые задачи быстрее и эффективнее

В игре, называемой «Пинбол», шарик (отождествляемый с мыслью) выбрасывается пружиной и начинает беспорядочно отскакивать от резиновых буферов, выстроенных в ряды. Два пинбольных автомата, изображенные здесь, — символы сфокусированного (слева) и рассеянного (справа) мышления. Сфокусированный режим соотносится с усиленной сосредоточенностью на конкретной задаче или понятии. Однако в сфокусированном состоянии вы порой внезапно обнаруживаете, что, глубоко сосредоточившись на задаче, пытаетесь ее решить с помощью неверных мыслей, гнездящихся в других местах мозга — не в тех, где находятся «правильные» мысли, нужные для решения задачи.

В качестве примера посмотрите на верхнюю «мысль», которую пинбол-автомат поначалу перебрасывает с места на место на левой иллюстрации. Эта мысль очень далека от нижнего участка мыслей и никак с ним не соединена. Обратите внимание: часть «верхнего» участка мысли движется по широким дорожкам — это значит, что нечто подобное вы уже обдумывали. Нижняя часть — новая мысль: под ней нет широких протоптанных путей.

Рассеянный, расфокусированный подход (справа) часто связан с широкой перспективой и представлением об общей картине. Этот способ мышления полезен при получении новых знаний. Как видите, рассеянное мышление не дает четко сосредоточиться на конкретной задаче, зато позволяет ближе подойти к решению, поскольку буфера поставлены редко и потому пути между ними длиннее.

Почему математика бывает более сложна для восприятия

Сфокусированный поиск решений в математике и естественных науках часто требует больше затрат, чем сфокусированный поиск решений в сферах, связанных с языком и людьми [7]. Возможно, это потому, что за тысячелетия своей истории человечество не научилось нужным образом обращаться с математическими идеями, которые зачастую более абстрактны и сложнее закодированы, чем обычный язык [8]. Разумеется, мы умеем размышлять о математике и естественных науках, но абстрактность и закодированность переводят проблему на более высокий — а порой и многократно более высокий — уровень сложности.

Что я подразумеваю под абстрактностью? Можно указать пальцем на настоящую живую корову, жующую жвачку на пастбище, и приравнять ее к буквам к-о-р-о-в-а, написанным на бумаге. Однако нельзя указать пальцем на настоящий живой плюс, обозначаемый символом «+», поскольку идея, лежащая в основе знака плюса, более абстрактна. А говоря о кодированности, я подразумеваю, что один символ может означать целый набор операций или идей, точно так же как знак умножения символизирует многократно повторенное сложение. В нашей аналогии с пинболом это примерно то же, как если бы буфера были частично сделаны из губки: чтобы они затвердели и шарик стал правильно от них отскакивать, потребовались бы дополнительные приемы и действия. Вот почему бороться с прокрастинацией при изучении математики и естественных наук более важно, чем при изучении любых других дисциплин (где этот навык тоже нужен). К прокрастинации мы еще вернемся.

С этими трудностями в изучении математики и естественных наук связано еще одно осложнение, называемое «эффект установки», или Einstellung-effect (немецкое слово Einstellung значит «установка»; для простоты можете представить себе «установку» дорожного шлагбаума или же преграду, появившуюся из-за изначального взгляда на предмет или проблему). Речь идет о феномене, при котором уже имеющаяся у вас идея или начальная мысль препятствует поиску лучшей идеи или решения [9]. Мы видели это на иллюстрации с пинбол-автоматом, относящейся к сфокусированному состоянию: там изначальная мысль уходила в верхнюю часть мозга, хотя последовательность ходов, приводящая к верному решению, лежала в нижней части.

Данный неправильный подход особо часто встречается при изучении наук, связанных с математикой, поскольку изначальный интуитивный импульс может порой привести к неверному результату. Отучаться от прежних ошибочных подходов нам приходится одновременно с освоением новых [10].

Эффект установки — частая помеха при изучении материала. Суть его не в том, что природную интуицию порой нужно обуздывать, а в том, что иногда сложно даже определить, с какой стороны подступиться к решению. Так бывает с домашними заданиями, над которыми долго бьешься: мысли мечутся где-то вдалеке от решения, поскольку тесно поставленные буфера, характерные для сфокусированного мышления, не дают вырваться на простор, где может найтись решение.

Вот почему одна из характерных ошибок при изучении математики и естественных наук состоит в том, что люди прыгают в воду раньше, чем научатся плавать [11]. Иными словами, они начинают работать над заданием вслепую — не прочитав учебника, не прослушав лекций, не просмотрев онлайновых уроков, не поговорив с кем-нибудь знающим. Перечисленное — рецепт для того, чтобы пойти ко дну. Это все равно что в сфокусированном режиме «выстрелить» мыслью из пинбол-автомата, не представляя себе, где может находиться решение.

Представление о том, какими способами можно получить правильное решение, важно не только для выполнения заданий по математике и естественным наукам, но и для обыденной жизни. Например, немного информации, бдительности и, возможно, экспериментаторства может спасти вас от утраты денег — или даже здоровья — в случае товаров, якобы произведенных по всем правилам науки [12]. А минимум знаний из определенной области математики может спасти вас от невыплат по ипотеке — т.е. от ситуации, способной крайне неблагоприятно повлиять на вашу жизнь [13].

Рассеянное состояние — просторный пинбол-автомат

Вспомните картинку, описывающую рассеянное мышление, которую вы видели несколькими страницами раньше: она изображает пинбол-автомат с редко поставленными буферами. Такой режим обдумывания позволяет мозгу смотреть на мир гораздо шире. Видите, как далеко может убежать мысль без препятствий, не натыкаясь на буфера? Соединяемые точки расположены на более значительном расстоянии друг от друга, так что можно перескакивать от одной мысли к другой, даже очень отдаленной. (Хотя, конечно, сложные идеи, требующие точности, в таком режиме обдумывать трудно.)

Если вы пытаетесь уяснить новое понятие или решить новую задачу, то у вас пока нет нужных наработанных путей — тех широких полос, которые могли бы задать направление мысли. Значит, для поиска возможных решений вам понадобится более широкое пространство — здесь-то и пригодится рассеянное состояние!

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.