Курс на Марс. Самый реалистичный проект полета к Красной планете - Роберт Зубрин Страница 54
Курс на Марс. Самый реалистичный проект полета к Красной планете - Роберт Зубрин читать онлайн бесплатно
Вот один из ответов: нужно иметь спутник связи и ретранслятор, размещенный на орбите Марса в 17065 километрах над экватором. На такой высоте спутник будет летать со скоростью 1,45 километра в секунду, обращаясь вокруг планеты за 24,6 часа. Поскольку это значение совпадает с продолжительностью марсианского дня, спутник станет вращаться синхронно с планетой, и наблюдателю на поверхности будет казаться, что тот не движется вообще. Такой ареосинхронный спутник – точный марсианский аналог геостационарных спутников, которые в настоящее время широко используются для обеспечения связи на Земле. Если экспедиция высадится на Марс на экваторе, спутник будет круглосуточно висеть прямо над головами исследователей, позволяя поддерживать связь в области радиусом примерно в 5000 километров вокруг базы – это почти половина поверхности планеты.
Но спутники связи стоят денег и, что более важно, иногда выходят из строя. Что делать, если ретранслятор начнет барахлить в то время, когда команда исследователей будет в 400 километрах от базы?
Запасной план заключается в использовании любительского радио. Дело в том, что у Марса есть ионосфера – слой заряженных частиц в верхних слоях атмосферы, – которая может отражать радиосигналы, обеспечивая связь на поверхности Марса в коротковолновом диапазоне так же, как это происходит на Земле. Мы хорошо знаем свойства ионосферы Марса благодаря измерениям, проведенным «Маринером-9», орбитальными аппаратами «Викингов» и европейским зондом «Марс Экспресс». Она простирается вверх, начиная с высоты около 120 километров, и состоит из ионов, включающих 90 % O2+ и 10 % CO2+, и равного количества свободных электронов, создаваемых фотоионизацией. В течение дня плотность электронов достигает пикового значения около 200 000 частиц в кубическом сантиметре на высоте около 135 километров. За ночь концентрация спадает до минимальной – около 5000 частиц в кубическом сантиметре на высоте около 120 километров. Эти значения где-то в 25 раз ниже, чем аналогичные показатели ионосферы Земли. Вместе с тем, поскольку верхний порог частот для коротковолнового радио зависит от квадратного корня из плотности, максимум, доступный на Марсе, будет ниже максимума на Земле примерно в пять раз. У нас радиолюбители могут разговаривать друг с другом с частотах до 20 МГц, а на Марсе потолком будет значение около 4 МГц в дневное время и 700 кГц в ночное. Последняя цифра покажется вам слишком маленькой, если вы хотите пересылать изображения или наладить высокоскоростную передачу данных, но этого более чем достаточно для инженерной телеметрии или голосового общения. На самом деле на Земле данная полоса частот – АМ-радио – наиболее удобна для коммерческих радиостанций и некоторых других форм связи.
Кроме того, хоть коротковолновый диапазон на Марсе и располагается на несколько более низких частотах, чем на Земле, этот недостаток (с использованием более высоких частот можно передавать данные на большей скорости) уравновешивается тем, что марсианская ионосфера намного меньше подвержена радиопомехам. На Земле энергетические требования к передаче сигналов в коротковолновом диапазоне продиктованы фактором помех, вызываемых далекими грозами и большим количеством других радиолюбителей, а также коммерческих радиостанций и военных в эфире. Всего этого не будет на Марсе.
Возможно, вы сейчас представляете себе какое-нибудь тяжелое, громоздкое любительское радиооборудование, непригодное для мобильной связи. Однако существуют и вполне современные коротковолновые технологии, они были разработаны в военных целях и хорошо подходят для использования на Марсе – например, усовершенствованная миниатюрная высокочастотная система (УМВЧС, Advanced Miniature High Frequency System), созданная корпорацией «Дифенс Системс Инк.». Это двунаправленная система, состоящая из передатчика и приемника, каждый ее блок имеет массу 0,8 килограмма и объем 0,7 литра – она достаточно мала, чтобы не только разместить ее в роверах, но и взять с собой на время внекорабельной деятельности. Система может передавать сигнал в глобальном масштабе на освещенной стороне Марса со скоростью 2,4 кбит в секунду с использованием 10-ваттного генератора на солнечных батареях, или ядерного генератора, или 30-ваттного электрического.
Такой скорости достаточно для инженерной телеметрии, переписки по электронной почте, голосового общения низкого качества в режиме реального времени или высококачественной передачи записанных пакетов голосовых сообщений. Чтобы осуществлять высококачественную передачу голосовых сообщений в реальном времени (как в земных телефонах), потребуется в 20 раз большая скорость передачи данных и 600 Вт мощности, которые легко генерируются в ровере. Тем не менее требования к мощности можно будет сильно снизить, если ионосфера Марса действительно настолько тихая, как и предсказывает теория. В любом случае УМВЧС использует технологию зондирования, которая автоматически проводит поиск в спектре радиочастот, чтобы найти максимальную применимую в режиме реального времени, а затем отдает команду обоим устройствам провести контрольную установку соединения на конкретной частоте и подтвердить, что данные были переданы корректно. Таким образом, даже если ионосферные условия окажутся непредсказуемыми или меняющимися во время передачи, УМВЧС сможет адаптироваться, чтобы найти и сохранить лучший канал связи. Она использует свою электронику, чтобы компенсировать размер антенны для длины выбранной для связи волны. Так, 6-метровая гибкая штыревая антенна может использоваться для передачи сигнала на 0,5 МГц как на частоте 5 МГц. Используемая в системе антенна очень легкая и, как правило, представляет собой просто пружину, которую можно быстро развернуть при необходимости.
Использование коротковолнового радио для связи дает исследователям Марса дополнительное преимущество. Та же система может использоваться для исследований с помощью глубокого георадара. Радиосигнал на 3 МГц имеет длину волны 100 метров. В сухой марсианском среде сигналы, если их направлять вниз, предположительно могут проникать в грунт на глубину около 10 длин своей волны – то есть в данном случае на 1000 метров. В последнее время ученые считают, что на Марсе, скорее всего, есть подповерхностный слой жидких грунтовых вод, которые можно найти на глубине от 500 до 1000 метров. Даже если это не соответствует действительности в глобальном масштабе, скорее всего, оно верно в некоторых местах, что подтверждается наблюдениями, сделанными космическим аппаратом «Марс Глобал Сервейор»: на его фотоснимках между 2001 и 2005 годами видны проявления признаков водной эрозии на склоне кратера, которые могли быть созданы только временным истечением воды из подземного источника, когда «Марс Глобал Сервейор» работал на орбите.
В самом деле такие водоемы также могут быть распространенными объектами, так как геотермальная энергия обязательно должна вызывать таяние карманов подповерхностного льда и образование резервуаров с горячей водой. (Марс живой в плане геологической активности. По оценкам ученых, некоторые из вулканов в провинции Фарсида могли образоваться меньше 200 миллионов лет назад. С точки зрения возраста Марса в 4,5 миллиарда лет это все равно что вчера.) Команда ровера, оснащенная коротковолновым радио, может направлять сигналы радара в почву. Если на глубине около километра от поверхности есть жидкая вода, ее более высокая электропроводность по сравнению с окружающей сухой почвой или льдом заставит радиосигнал резко отразиться и вернуться к ресиверу, а временная задержка между передачей и приемом сигнала покажет экипажу, насколько глубоко располагается резервуар. Если исследователи обнаружат теплый водоем около поверхности, то расположат в этом месте буровую установку. Вода, в конце концов, – основа жизни.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments