Игра случая. Математика и мифология совпадения - Джозеф Мазур Страница 11
Игра случая. Математика и мифология совпадения - Джозеф Мазур читать онлайн бесплатно
Позиция Юнга относительно смысловых совпадений убедительна. Он полагал, что смысловые совпадения создают мощные скрытые движения в психике человека и что последующие синхронистичные события сознательного взаимосвязаны с бессознательным. Совпадения связывают нас хитросплетениями жизни, раскрывают чувство собственного «я» и придают смысл нашему существованию. Совпадение, подобное двойной радуге, которую считают посланием умерших, придает смысл представлению о том, что все мы навсегда связаны с близкими нам людьми архетипическим сходством – самой радугой как символом дороги на небеса. В момент, когда мы сталкиваемся с совпадением, мы видим связь с большим миром. Даже простая связь дает нам почувствовать себя частью Галактики, а может быть, даже чем-то более значительным. Большую часть времени мы идем по жизни, не замечая таких связей, как если бы их невидимая сеть вовсе не существовала. Мы едва ли осознаем, что множество таких связей всегда находится буквально в двух шагах от нас. Мы редко видим синхронистичные связи прямо у себя под носом и удивляемся, когда их замечаем, но в том-то и прелесть {34}. Однако реакция на неожиданность в историях из жизни зависит от того, как именно они рассказаны. Отдельные подробности могут сделать историю совпадений более удивительной и значимой, когда ее рассказывают как предсказание будущих событий, а не как нечто, произошедшее только что. Личная история обязана быть более удивительной и значимой для рассказчика, нежели для слушателя. Как мне кажется, история про таксиста-альбиноса была не такой уж удивительной и, конечно, в ней нет того смысла, что есть в моей истории о том, как я столкнулся с братом в кафе в заливе Мирабелло на Крите, услышав его знакомый смех. Истории из предыдущей главы поразительны, однако они неизбежны в долгосрочной перспективе.
За последние несколько лет я слышал много историй о совпадениях, которые в первый момент кажутся совершенно изумительными. Некоторые из них о том, что кто-то обознался. Некоторые о том, как кто-то оказался в определенном месте в подходящее (или неподходящее) время. Сюда входят, в частности, случайные встречи и происшествия с предметами. Другие – о выигрышах (или проигрышах) в играх, которые зависят от случайных событий. А некоторые касаются телепатии и ясновидения. Большинство из них можно объяснить в той или иной мере с помощью простого математического вычисления вероятности, которая, как правило, выше, чем можно было бы ожидать. Истории эти кажутся удивительными, только если рассматривать их вне правильного понимания статистики, недооценивая (или переоценивая) то, насколько велика Земля и ее население. Почему у всех нас найдется так много историй, которые укладываются в одну из категорий в предыдущей главе? Можно без труда дать ответ, если немного разобраться в теории вероятностей и в том, как она работает не с точки зрения здравого смысла, а с точки зрения науки.
Раздел 2 Математика КоллизииБудь наш мир велик иль мал,В нем есть чудесные явления.И утверждать я бы не стал,Что стоит ждать их наступленияВ одну из тысячи ночейНа убывающей луне,Или раз в три миллиона дней,Когда Сатурн к утру яснейИ дивные случаются мгновения.Но уверяю вас: они придут!Пусть их шаги малы,Они не устают.Дж. М. (пер. М. И.).Здесь мы предложим читателю некоторые математические инструменты для исследования историй о совпадениях: закон больших чисел, закон действительно больших чисел, задачу о дне рождения, основы теории вероятностей и теории распределения чисел. Этот раздел охватывает математику, которая будет полезна для понимания основной идеи книги, а именно: если есть сколь угодно малая вероятность наступления некоторого события, когда-нибудь оно обязательно произойдет. Эти математические средства будут использованы для того, чтобы проанализировать истории, представленные в разделе 1; мы также вернемся к этим средствам в разделе 3.
Глава 4 Каковы шансы?Я обнаруживал «совпадения», настолько многозначительно связанные, что вероятность их «случайности» выражалась бы астрономической цифрой.
Карл Густав Юнг {35}Совершенно невероятные истории о совпадениях неизменно заканчиваются вопросом: «Ну и каковы шансы, что нечто подобное может произойти?» Обычно вопрос является риторическим, поскольку на него в буквальном смысле сложно ответить. И хотя есть фундаментальные статистические методы и проверенные экспериментальные модели для изучения редких совпадений, у математиков все еще нет общей теории для данного предмета. Проблема заключается в самом определении слова. Все-таки «совпадение» предполагает событие без очевидной причины, включая случайности и чудеса. Что бы мы делали без веры в чудеса? Возможно, измерение вероятности совпадения – это оксюморон. Как мы можем узнать вероятность события, не имеющего видимой причины? Кто-то может утверждать, что выпадение двух шестерок на паре игральных костей не имеет видимой причины, за исключением сотни не поддающихся оценке переменных, которые определяют их движение, но тем не менее мы в состоянии оценить шансы против такого исхода как 35 к 1 [6]. У нас имеются точные и столь необходимые для страховых компаний данные о шансе дожить до возраста x лет. Так что же мешает нам измерить вероятность чуда или того, что сбудется сон, в котором мы встретили таинственного незнакомца посреди переполненной людьми комнаты? Нам не всегда необходимо знать причину события для того, чтобы разобраться с измерением его вероятности. Мы не знали, почему курение вызывает рак, когда выяснили это с помощью оценки статистической вероятности возникновения болезни. Это произошло после Второй мировой войны, когда женщины, которые до войны не курили, пошли работать на заводы и в учреждения – и начали курить. Тут же подскочила заболеваемость раком, – и бинго! – мы предположили наличие корреляции и сложили два и два. Проблема со многими совпадениями заключается в гигантском числе переменных, которых мы можем не знать или быть не в состоянии вывести из статистической выборки. Совпадения непросто оценить с помощью методов количественного анализа; однако есть качественные основания для предположения о том, что они происходят чаще, чем мы ожидаем. Даже физики избегают количественных прогнозов, предпочитая качественные.
Размышляя о совпадениях, мы имеем в виду правдоподобие. Попробуйте рассказать историю о совпадении, и кто-нибудь непременно спросит: «Ну и каковы шансы того, что такое могло произойти?» Ответ почти всегда сводится к словосочетанию «довольно незначительные». Объяснить нам, что значит «довольно незначительные», или по крайней мере заставить задуматься – задача специалистов по теории вероятностей. Меру правдоподобности события в числовом выражении математики называют вероятностью. Она всегда находится в пределах от 0 до 1, где 0 означает невозможность, а 1 – абсолютную достоверность. Существует несколько способов ее измерения. Один – рассмотреть относительную частотность большой выборки. В принципе, вероятность события – это отношение двух чисел, каждое из которых можно определить, повторяя испытание и вычисляя долю случаев, когда событие произошло. По мере увеличения числа испытаний частота наступления события приближается к вероятности этого события. Второй способ измерения – посчитать логические возможности: брошенная правильная игральная кость может приземлиться только на одну из шести сторон. Нам нет необходимости бросать кости, чтобы узнать, что вероятность выбросить четное число составляет 1/2, или 50 %.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Comments