Игра случая. Математика и мифология совпадения - Джозеф Мазур Страница 12

Книгу Игра случая. Математика и мифология совпадения - Джозеф Мазур читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Игра случая. Математика и мифология совпадения - Джозеф Мазур читать онлайн бесплатно

Игра случая. Математика и мифология совпадения - Джозеф Мазур - читать книгу онлайн бесплатно, автор Джозеф Мазур

Если два события связаны таким образом, что оба не могут произойти одновременно ввиду некоего логического ограничения (например, невозможность вытянуть одновременно красную даму и даму пик при условии, что тянут только одну карту, из стандартной колоды в 52 карты), тогда вероятность наступления одного либо другого события – это сумма вероятностей каждого из событий. Другими словами, вероятность вытянуть красную даму или даму пик составляет 1/26 + 1/52 = 3/52.

Общий смысл следующий: предположим, что X обозначает исход испытания, а P (X) – вероятность наступления события. Тогда вероятность того, что событие не наступит, будет 1 – P (X). Например, если вы подбрасывали монетку, то P (орел) будет равняться 1/2, как и P (решка). Если бросают пару игральных костей, то P (4) = 1/12, а P (не 4) = 11/12 [7]. Если X и Y – возможные взаимоисключающие исходы, то вероятность наступления события X и Y равна 0 и вероятность наступления X или Y равна P (X) + P (Y).

В качестве примера из жизни возьмем следующие события: первое – случайно встретиться с лучшим другом на Бора-Бора утром в следующий вторник; второе – случайно встретить двоюродного брата или сестру после полудня в тот же самый день в Рейкьявике. Первое имеет влияние на второе. Если вы не располагаете личным истребителем F-15, вы не можете случайно встретиться с лучшим другом на Бора-Бора и случайно встретиться с двоюродным братом или сестрой в Рейкьявике. Естественно, допущение обеих возможностей дает лучшие шансы. В случае с картами: можно вытянуть красную даму или (черную) даму пик. Если, с другой стороны, мы имеем ситуацию, где одно событие совершенно не зависит от другого, тогда вероятность того, что наступят оба, – это произведение вероятностей каждого из событий. Вероятность вытянуть красную даму, а затем, вернув ее в колоду, вытянуть даму пик будет 1/26 × 1/52 = 1/1352.

Действительно, требование о том, чтобы наступили два заданных события, дает меньшие шансы. С другой стороны, вероятность вытянуть из колоды обе карты, не возвращая в колоду первую карту, немного осложняет задачу. Нам потребуется найти вероятность того, что одно событие наступит после другого: условная вероятность. Случай со сдачей двух карт из одной колоды поучителен. Если допустить, что сданную карту не возвращают в колоду, то вероятность вытянуть красную даму, а затем – даму пик составит 1/26 × 1/51 = 1/1326. В момент сдачи второй карты в колоде не будет одной красной дамы или попросту одной карты. Таким образом, вероятность вытянуть даму пик на второй сдаче будет вероятностью вытянуть ее из колоды в 51 карту. Не возвращая карту в колоду, мы тем самым увеличиваем вероятность сдачи дамы пик. В данном случае важно то, что мы имеем дело с произведением двух чисел, оба из которых меньше единицы, а это означает, что полученная вероятность будет меньше вероятности каждого из событий. Для ясности отметим: мы условились, что дама пик была вытянута после красной дамы. Если бы условием была сдача любой из карт – дама пик вытянута первой по счету или второй, вероятность была бы больше. Мы рассматривали бы две вероятности: вероятность сдачи дамы пик, а затем красной дамы и вероятность сдачи красной дамы, а затем дамы пик.

Разница между шансом и вероятностью

Мы видим различие между понятиями «шанс» и «вероятность». Когда мы говорим, что шанс – это m: n, мы имеем в виду, что ожидаем, что событие не наступает в m случаях из n, когда оно наступает. Стандартная запись выглядит как m: n, что на словах означает «отношение m к n». Если шанс – это m: n, то вероятность будет отношением n/m+n, т. е. шанс 4 к 1, если перевести в вероятность, будет 1/5. Для вычисления шансов наступления события p вычислим отношение (1 – p)/p и сократим его до m/n. Тогда шанс того, что событие наступит, составит m к n. В случае с p = 1/5 отношение превращается в (1 – (1/5))/(1/5) = 4/1, таким образом шанс составляет 4:1 [8].

Понятие шанса взято из азартных игр. С его помощью легче вычислять выигрыш; если выигравшая ставка в $1 оплачивается как m к 1, то выигрыш составит $m, т. е. сумма включает также и величину первоначальной ставки. Равные шансы или равная ставка означают, что шансы 1 из 1. В этой книге мы постараемся ограничиться случаями, где m = 1. Понять, насколько вероятно или невероятно событие, проще, когда мы знаем, что на одно удачное испытание приходится m неудачных. В определенных случаях мы будем использовать выражение «шансы 1 из m», подразумевая, что на m испытаний будет приходиться одно удачное. Так, например, «шансы вытянуть туза пик из колоды в 52 карты составляют 1 из 52», что можно выразить и как «шанс вытянуть туза пик из колоды в 52 карты составляет 51 к 1».

Вероятностный мысленный эксперимент

Выберем два любых маловероятных события. Примем в качестве первого – черная кошка перейдет вам путь в следующую среду. В качестве второго – вы когда-нибудь получите заказное письмо от юридической конторы, в котором будет сказано, что ваш двоюродный дедушка, о котором вы никогда не слышали, скончался и оставил вам миллион долларов. Предположим, что первое событие имеет вероятность 0,000001, учитывая численность черных кошек, шатающихся по улицам в вашем районе. Предположим, что вероятность второго – 0,000001, учитывая, что у ваших родителей не слишком много дядьев, о которых вы не знаете. (Эти числа я выбрал исключительно умозрительно.) Вероятность наступления обоих событий необычайно мала – всего 0,000000000001. Эта вероятность меньше, чем вероятность того, что наступит хотя бы одно из событий, и выше, чем вероятность того, что оба события произойдут одновременно. Несомненно, что вероятность наступления одного или другого события выше.

Теперь рассмотрим десять отдельных редких событий:

а) Черная кошка переходит вам путь в среду.

б) Двоюродный дедушка, о котором вы никогда не слышали, умирает и оставляет вам в наследство миллион долларов.

в) Кольцо, которое вы потеряли 20 лет назад, появляется на гаражной распродаже на вашей улице.

г) Сон, в котором мы встретили таинственного незнакомца посреди переполненной людьми комнаты, сбывается.

д) Вы играете в лотерею Texas Lotto и дважды выигрываете.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.