Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро Страница 19

Книгу Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро читать онлайн бесплатно

Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро - читать книгу онлайн бесплатно, автор Густаво Эрнесто Пинейро

ГЁСТА МИТТАГ-ЛЕФФЛЕР

Магнус Гёста Миттаг-Леффлер родился в Стокгольме (Швеция) 16 марта 1846 года. Его талант проявился уже в ранней юности; у него было много интересов, среди которых — наука и литература. В1865 году он записался в Уппсальский университет (опять же в Швеции), намереваясь стать государственным чиновником, но вскоре перешел на математический факультет и в 1872 году защитил докторскую диссертацию. Миттаг-Леффлер внес большой вклад в область исчисления, в аналитическую геометрию, теорию вероятностей, теорию функций; он был членом почти всех математических обществ Европы и получил несколько званий почетного доктора наук в таких университетах, как Оксфордский, Кембриджский, Болонский и университет Осло. В 1882 году он основал журнал Acta Mathematica, который курировал до самой смерти 7 июля 1927 года. Журнал издается до сих пор.

Кантор. Бесконечность в математике.

В таком случае его называют периодическим. В XVIII веке математики обратили внимание на то, что очень многие физические явления — например, связанные с распространением звука или тепла — могут быть описаны при помощи периодических графиков. Они также заметили, что иногда эти графики оказываются прерывистыми, то есть в них наблюдаются резкие скачки. Например, на рисунке 3 представлен график, состоящий из последовательности косых линий. Чтобы изобразить его, мы должны отметить «скачок» от верхнего края каждой линии к нижнему краю следующей. Этот график описывает не физическое движение, а интенсивность звукового сигнала; горизонтальная линия обозначает нулевую интенсивность или тишину. Рассмотрим, как можно интерпретировать график при этих условиях. В начале — тишина, а затем появляется звуковой сигнал, который постепенно увеличивает интенсивность (это видно по тому, как возрастает первая косая линия); звук достигает своей максимальной интенсивности, а затем наступает тишина, но тут же опять начинает увеличиваться интенсивность звука, как в предыдущий раз, и снова достигает максимального уровня (мы видим, что вторая косая линия такая же, как первая). Опять наступает тишина, а затем повторяется та же схема, снова и снова.

Кантор. Бесконечность в математике.

РИС.1

Кантор. Бесконечность в математике.

РИС. 2

Кантор. Бесконечность в математике.

РИС. 3

В начале XIX века французский математик Жозеф Фурье (1768-1830) разработал метод, который позволил ему записать любой график как сумму особых, при этом очень простых кривых, которые математически выражаются при помощи функций, названных тригонометрическими. Эти суммы, в свою очередь, обычно предполагают бесконечное (потенциально) количество кривых, и, так как в математике бесконечные суммы обычно называют рядами, этот метод сегодня известен как разложение на тригонометрические ряды, или ряды Фурье. Благодаря ему Фурье смог успешно изучить большое количество физических явлений, и он по-прежнему остается важным инструментом во многих областях математики, физики и инженерного дела.

ПАРАДОКС

Каков результат операции 1-1 + 1-1 + 1-..., которая продолжается бесконечно? Немецкий математик Готфрид Вильгельм фон Лейбниц (1646-1716) утверждал, что результатом этого «бесконечного вычисления» будет 1/2. Рассмотрим ход его рассуждений. Обозначим результат буквой S. Следовательно,

1-1 + 1-1 + 1-...=S

1-(1-1 + 1-1-...)=S.

Кантор. Бесконечность в математике.

Портрет Готфрида Вильгельма фон Лейбница, музей герцога Антона Ульриха в Брауншвейге (Германия), около 1700 года.

Поэтому результат выражения в скобках также будет равен S. Таким образом, получается, что 1 - S = S, откуда можно вывести, что S равно 1/2. Но мы можем сгруппировать члены выражения и по-другому:

1-1 + 1-1 + 1-.. . = (1-1)+(1-1)+(1-1)+... = 0 + 0 + 0+.. . = 0.

В этом случае мы получим 0. Или же мы можем сгруппировать так:

1-1 + 1-1 + 1-... = 1-(1-1)-(1-1)-... = 1-0-0-... = 1,

и результат будет равен 1. Какой же результат правильный: 1/2,0 или 1? Такие парадоксы мучили математиков на протяжении десятков лет, пока наконец в XIX веке не были выведены правила оперирования бесконечных сложений и вычитаний. На самом деле выражение 1-1+1-1+1-... не имеет никакого результата. Другими словами, предполагаемый результат на самом деле не существует. Рассуждения Лейбница неверны именно потому, что числа S нет.

ЕДИНСТВЕННОЕ РАЗЛОЖЕНИЕ

В 1860-е годы в Галле Эдуард Гейне решил проверить, всегда ли будет одинаковым разложение такого периодического графика, как ряд Фурье. Другими словами, Гейне хотел узнать, может ли один периодический график быть записан в виде двух разных тригонометрических рядов.

Ему удалось доказать, что если в графике нет «скачков» или прерывностей, то он в самом деле будет иметь только один возможный вариант разложения. Но Гейне не нашел общего доказательства, которое было бы действительным для всех возможных ситуаций. Так, он не доказал единственность в случае, если в периоде — так называется классический постоянно повторяющийся график — бесконечное (потенциально) количество разрывов. Когда в 1869 году Кантор прибыл в Галле, Гейне предложил ему разобраться, будет ли разложение периодического графика всегда единственным, даже если количество «скачков» продолжит расти до бесконечности.

Кантор занялся этой задачей и в 1870 году получил первый результат: разложение будет единственным только при условии, что скачки распределены определенным образом, то есть отвечают особым требованиям. Точки графика имеют две координаты — абсциссу и ординату. Именно абсциссы должны выполнять эти условия. Однако Кантору было непросто выразить их конкретным, точным и изящным способом. Разумеется, он хорошо понимал, что это за условия, но не находил ясных и понятных слов для их описания.

ПРОИЗВОДНЫЕ МНОЖЕСТВА

С 1870 по 1872 год Кантор опубликовал пять статей, в которых окончательно сформулировал свое решение задачи единственного способа разложения ряда Фурье. В процессе помимо прочего он нашел ответ на проблему континуума, и поэтому его определение вещественных чисел через фундаментальные последовательности было опубликовано в рамках работы по тригонометрическим рядам.

Перейти на страницу:
Изменить размер шрифта:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Comments

    Ничего не найдено.